
Bull. Korean Math. Soc. 52 (2015), No. 4, pp. 1149–1167
http://dx.doi.org/10.4134/BKMS.2015.52.4.1149

VARIATIONAL RESULT FOR THE BIFURCATION

PROBLEM OF THE HAMILTONIAN SYSTEM

Tacksun Jung and Q-Heung Choi

Abstract. We get a theorem which shows the existence of at least four
2π-periodic weak solutions for the bifurcation problem of the Hamiltonian
system with the superquadratic nonlinearity. We obtain this result by
using the variational method, the critical point theory induced from the
limit relative category theory.

1. Introduction

Let H(t, z(t)) be a C2 function defined on R
1 × R

2n which is 2π-periodic
with respect to the first variable t, and λ ∈ R. In this paper we consider the
number of the 2π-periodic weak solutions for the bifurcation problem of the
following Hamiltonian system

(1.1)
˙p(t) = −λq(t)−Hq(t, p(t), q(t)),

˙q(t) = λp(t) +Hp(t, p(t), q(t)),

where p, q ∈ Rn. Let z = (p, q) and J be the standard symplectic structure on
R2n, i.e.,

J =

(

0 −In
In 0

)

,

where In is the n× n identity matrix. Then (1.1) can be rewritten as

(1.2) −Jż = λz +Hz(t, z(t)),

where ż = dz
dt

and Hz is the gradient of H . We assume that H ∈ C2(R1 ×

R2n,R1) satisfies the following conditions:
(H1) H ∈ C2(R1 × R2n,R), H(0, θ) = 0, where θ = (0, . . . , 0).
(H2) There exist 1 < p1 ≤ p2 < 2p1 + 1, α1 > 0, α2 > 0, β1 ≥ 0 such that

α1‖z(t)‖R2n
p1+1

− β1 ≤ H(t, z(t)) ≤ α2‖z(t)‖R2n
p2+1

for every z ∈ R
2n.

(H3) H is a 2π-periodic function with respect to t.
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Several 6 ([1], [5], [6], [7] etc.) studied the nonlinear Hamiltonian system.
Jung and Choi ([5], [6], [7]) considered (1.1) with nonsingular potential nonlin-
earity or jumping nonlinearity crossing one eigenvalue, or two eigenvalues, or
several eigenvalues. Chang ([1]) proved that (1.1) has at least two nontrivial
2π-periodic weak solutions under some asymptotic nonlinearity. Jung and Choi
([6]) proved that (1.1) has at least m weak solutions, which are geometrically
distinct and nonconstant under some jumping nonlinearity.

We are looking for the weak solutions of (1.1) under the conditions (H1)-
(H3). The 2π-periodic weak solution z = (p, q) ∈ E of (1.1) satisfies

∫ 2π

0

(ż − λJz(t)− JHz(t, z(t))) · Jwdt = 0 for all w ∈ E,

i.e.,
∫ 2π

0

[(ṗ+ λq(t) +Hq(t, z(t))) · ψ − (q̇ − λp(t)−Hp(t, z(t))) · φ]dt = 0

for all ζ = (φ, ψ) ∈ E, where E is introduced in Section 2.
Our main result is as follows:

Theorem 1.1. Assume that H satisfies the conditions (H1)-(H3) and that j0
and j1 are negative integers with j1 < j0 < 0. Then there exists a small number

δ > 0 such that for any λ with j1 − δ < λ < j1 < j0 < 0, system (1.1) has at

least four nontrivial 2π-periodic weak solutions.

The outline of the proof of Theorem 1.1 is as follows: In Section 2, we intro-
duce the perturbed operator Aǫ = ǫI+A of the operator A (A(z(t)) = −Jż(t))
to make the compactness of the operator |Aǫ|

−1 and so prove the (P.S.)∗

condition for the associated functional of the perturbed problem Aǫ(z) =
λz + ǫz + Hz(t, z(t)). We also recall the critical point theory induced from
the limit relative category, which plays a crucial role to prove the multiplicity
result. In Section 3, we prove the existence of the first weak solution and the
second one of (1.1), and in Section 4 we prove the existence of the third weak
solution and fourth one of (1.1) by the critical point theory induced from the
limit relative category, and prove Theorem 1.1.

2. Abstract critical point theory

Let L2([0, 2π],R2n) denote the set of 2n-tuples of the square integrable 2π-
periodic functions and choose z ∈ L2([0, 2π],R2n). Then it has a Fourier ex-

pansion z(t) =
∑k=+∞

k=−∞ ake
ikt, with ak = 1

2π

∫ 2π

0
z(t)e−iktdt ∈ C2n, a−k = āk

and
∑

k∈Z
|ak|

2 <∞. Let

A : z(t) 7→ −Jż(t)

with domain

D(A) = {z(t) ∈ H1([0, 2π],R2n) | z(0) = z(2π)}
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= {z(t) ∈ L2([0, 2π],R2n) |
∑

k∈Z

(ǫ+ |k|)2|ak|
2 < +∞},

where ǫ is a positive small number. Then A is self-adjoint operator. Let {Mλ}
be the spectral resolution of A, and let τ be a positive number such that
τ /∈ σ(A) and [−τ, τ ] contains only one element 0 of σ(A) and r be a positive
number such that r /∈ σ(A), [j0−r, j0+r] contains only one element j0 of σ(A),
[j1 − r, j1 + r] contains only one element j1 of σ(A) and j1 + r < j0 − r. Let

P0 =

∫ τ

−τ

dMλ, P+ =

∫ +∞

τ

dMλ, P− =

∫ −τ

−∞

dMλ,

P(−∞,j1−1] =

∫ j1−1

−∞

dMλ, Pj0 =

∫ j0+r

j0−r

dMλ, Pj1 =

∫ j1+r

j1−r

dMλ.

Let

L0 = P0L
2([0, 2π],R2n), L+ = P+L

2([0, 2π],R2n),

L− = P−L
2([0, 2π],R2n), L(−∞,j1−1] = P(−∞,j1−1]L

2([0, 2π],R2n),

Lj0 = Pj0L
2([0, 2π],R2n), Lj1 = Pj1L

2([0, 2π],R2n).

For each u ∈ L2([0, 2π],R2n), we have the composition

u = u0 + u+ + u−,

where u0 ∈ L0, u+ ∈ L+, u− ∈ L−. According to A, there exists a small
number ǫ > 0 such that −ǫ /∈ σ(A). Let us define the space E as follows:

E = D(|A|
1
2 ) = {z ∈ L2([0, 2π],R2n) |

∑

k∈Z

(ǫ+ |k|)|ak|
2 <∞}

with the scalar product

(z, w)E = ǫ(z, w)L2 + (|A|
1
2 z, |A|

1
2w)L2

and the norm

‖z‖ = (z, z)
1
2

E = (
∑

k∈Z

(ǫ + |k|)|ak|
2)

1
2 .

The space E endowed with this norm is a real Hilbert space continuously
embedded in L2([0, 2π],R2n). The scalar product in L2 naturally extends as

the duality pairing between E and E′ =W− 1
2
,2([0, 2π],R2n). We note that the

operator (ǫI + |A|)−1 is a compact linear operator from L2([0, 2π],R2n) to E
such that

((ǫI + |A|)−1w, z)E =

∫ 2π

0

(w(t), z(t))dt.

Let
Aǫ = ǫI +A.

Let
E0 = |Aǫ|

− 1
2L0, E+ = |Aǫ|

− 1
2L+, E− = |Aǫ|

− 1
2L−,

E(−∞,j1−1] = |Aǫ|
− 1

2L(−∞,j1−1], Ej0 = |Aǫ|
− 1

2Lj0 , Ej1 = |Aǫ|
− 1

2Lj1 .
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Then E = E0 ⊕ E+ ⊕ E−, and for z ∈ E, z has the decomposition z =
z0 + z+ + z− ∈ E, where

(2.1) z0 = |Aǫ|
− 1

2u0, z+ = |Aǫ|
− 1

2u+, z− = |Aǫ|
− 1

2u−.

Thus we have

‖z0‖E0
= ‖u0‖L0

, ‖z+‖E+
= ‖u+‖L+

, ‖z−‖E−
= ‖u−‖L−

and that E0, E+, E−, E(−∞,j1−1], Ej1 , Ej0 are isomorphic to L0, L+, L−,
L(−∞,j1−1], Lj1 , Lj0 respectively. Moreover E = E(−∞,j1−1]⊕Ej1 ⊕Ej0 ⊕E+.
Let us define a functional

f(u) =
1

2
(‖u+‖

2
L2 + ‖M+u0‖

2
L2 − ‖M−u0‖

2
L2 − ‖u−‖

2)L2 − ψǫ(z),

where ψǫ(z) = ψ(z) + ǫ
2‖z‖

2
L2, ψ(z) =

∫ 2π

0 [λ2 z(t)
2 + H(t, z(t))]dt, M+ =

∫∞

0
dMλ, M− =

∫ 0

−∞
dMλ. By H ∈ C

2, ψ(z) =
∫ 2π

0
[λ2 z(t)

2 +H(t, z(t))] ∈ C2.
Let

F (z) = λz(t) +Hz(t, z(t)), Fǫ(z) = ǫz + F (z) = ǫz + λz(t) +Hz(t, z(t)).

Then (1.2) can be rewritten as

(2.2) Aǫ(z) = Fǫ(z).

The Euler equation of the functional f(u) is the system

(2.3) u+ = |Aǫ|
− 1

2P+Fǫ(z),

(2.4) u− = −|Aǫ|
− 1

2P−Fǫ(z),

(2.5) M+u0 = |Aǫ|
− 1

2M+P0Fǫ(z), M−u0 = −|Aǫ|
− 1

2M−P0Fǫ(z).

The system (2.3)-(2.5) is reduced to

(2.6) Aǫz+ = P+Fǫ(z0 + z+ + z−) or z+ = (Aǫ)
−1P+Fǫ(z0 + z+ + z−),

(2.7) Aǫz− = P−Fǫ(z0 + z+ + z−) or z− = (Aǫ)
−1P−Fǫ(z0 + z+ + z−),

(2.8) AǫM+z0 =M+P0Fǫ(z0+z++z−), AǫM−z0 =M−P0Fǫ(z0+z++z−).

It follows from (2.3)-(2.8) that z = z0+z++z− is a solution of (1.2) if and only
if u = u0 + u+ + u− is a critical point of f . By (2.1), we define a functional

I(z) = f(u(z)).

The functional I(z) is of the form

I(z) =
1

2
(‖|Aǫ|

1
2 z+‖

2
L2 + ‖|Aǫ|

1
2M+z0‖

2
L2 − ‖(−|Aǫ|)

1
2 z−‖

2
L2

− ‖(−|Aǫ|)
1
2M−z0‖

2
L2)− ψǫ(z).

Thus it suffices to find the critical points of the functional I to find the critical
points of the functional f . By the following Lemma 2.1, the weak solutions of
(2.2) coincide with the critical points of the functional I(z).
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Lemma 2.1. Assume that H satisfies the conditions (H1)-(H3) and λ /∈ Z.

Then I(z) is continuous and Fréchet differentiable in E with Fréchet derivative

(2.9)

DI(z)w =

∫ 2π

0

(JAǫz(t)− (λ+ ǫ)Jz(t)− JHz(t, z(t))) · Jwdt for all w ∈ E.

Moreover DI ∈ C. That is, I ∈ C1.

Proof. First we prove that I(z) =
∫ 2π

0 [ 12Aǫz−
ǫ+λ
2 z2−H(t, z(t))]dt is continuous

in E. For z, w ∈ E,

|I(z + w)− I(z)|

=

∣

∣

∣

∣

∫ 2π

0

1

2
Aǫ(z + w) · (z + w)−

∫ 2π

0

[H(t, z + w) +
ǫ+ λ

2
(z + w)2]

−

∫ 2π

0

1

2
Aǫ(z) · z +

∫ 2π

0

[H(t, z) +
ǫ+ λ

2
z2]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 2π

0

1

2
[Aǫ(z) · w +Aǫ(w) · z +Aǫ(w) · w]

−

∫ 2π

0

[H(t, z + w) −H(t, z) +
ǫ+ λ

2
(2z · w + w2))]

∣

∣

∣

∣

.

We note that
∣

∣

∣

∣

∫ 2π

0

1

2
[Aǫ(z) · w + Aǫ(w) · z +Aǫ(w) · w

∣

∣

∣

∣

= O(‖w‖R2n)

and
∣

∣

∣

∣

∫ 2π

0

[H(t, z + w)−H(t, z)]dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 2π

0

[Hz(t, z(t)) · w +O(‖w‖R2n)]dt

∣

∣

∣

∣

= O(‖w‖R2n).(2.10)

Thus we have

|I(z + w) − I(z)| = O(‖w‖R2n).

Next we shall prove that I(z) is Fréchet differentiable in E. For z, w ∈ E,

|I(z + w)− I(z)−DI(z)w|

=

∣

∣

∣

∣

∫ 2π

0

1

2
Aǫ(z + w) · (z + w)−

∫ 2π

0

[H(t, z + w) +
ǫ+ λ

2
(z + w)2]

−

∫ 2π

0

1

2
Aǫ(z) · z +

∫ 2π

0

[H(t, z) +
ǫ+ λ

2
z2]

−

∫ 2π

0

JAǫ(z) · Jw +

∫ 2π

0

[(JHz(t, z) + (ǫ+ λ)Jz) · Jw]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 2π

0

1

2
[Aǫ(w) · z +Aǫ(w) · w]
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−

∫ 2π

0

[H(t, z + w) −H(t, z)−Hz(t, z) · w +
ǫ+ λ

2
w2)]

∣

∣

∣

∣

.

By (2.10), we have
∫ 2π

0

[H(t, z + w)−H(t, z)−Hz(t, z)]dt = O(‖w‖R2n).

Thus
|I(z + w) − I(z)−DI(z)w| = O(‖w‖R2n). �

Now, we recall the critical point theory on the manifold with boundary. Let
E be a Hilbert space and M be the closure of an open subset of E such that
M can be endowed with the structure of C2 manifold with boundary. Let
f : W → R be a C1,1 functional, where W is an open set containing M . For
applying the usual topological methods of the critical points theory we need a
suitable notion of critical point for f on M . We recall the following notions:
lower gradient of f onM , (P.S.)∗c condition and the limit relative category (see
[4]).

Definition 2.1. If z ∈M , the lower gradient of f on M at z is defined by

(2.11) grad−Mf(z) =

{

Df(z) if z ∈ int(M),
Df(z) + [〈Df(z), ν(z)〉]−ν(z) if z ∈ ∂M ,

where we denote by ν(z) the unit normal vector to ∂M at the point z, pointing
outwards. We say that z is a lower critical for f on M , if grad−Mf(z) = 0.

Since the functional I(z) is strongly indefinite, the notion of the (P.S.)∗c
condition and the limit relative category is a very useful tool for the proof of
the main theorems.

Let (En)n be a sequence of closed subspaces of E with the conditions:

(2.12) En = En− ⊕ E0 ⊕ En+, where En+ ⊂ E+, En− ⊂ E− for all n,

(En+ and En− are subspaces of E), dimEn < +∞, En ⊂ En+1, ∪n∈NEn is
dense in E. Let PEn

be the orthogonal projections from E onto En. Mn =
M ∩En, for any n, be the closure of an open subset of En and has the structure
of a C2 manifold with boundary in En. We assume that for any n there exists
a retraction rn :M →Mn. For given B ⊂ E, we will write Bn = B ∩ En.

Definition 2.2. Let c ∈ R. We say that f satisfies the (P.S.)∗c condition
with respect to (Mn)n, on the manifold M with boundary, if for any sequence
(kn)n in N and any sequence (un)n in M such that kn → ∞, un ∈ Mkn

, ∀n,
f(un) → c, grad−Mkn

f(un) → 0, there exists a subsequence of (un)n which

converges to a point u ∈M such that grad−Mf(u) = 0.

Let Y be a closed subspace of M .

Definition 2.3. Let B be a closed subset of M with Y ⊂ B. We define the
relative category catM,Y (B) of B in (M,Y ), as the least integer h such that
there exist h+ 1 closed subsets U0, U1, . . ., Uh with the following properties:
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B ⊂ U0 ∪ U1 ∪ · · · ∪ Uh;
U1, . . . , Uh are contractible in M ;
Y ⊂ U0 and there exists a continuous map F : U0 × [0, 1]→M such that

F (x, 0) = x ∀x ∈ U0,

F (x, t) ∈ Y ∀x ∈ Y, ∀t ∈ [0, 1],

F (x, 1) ∈ Y ∀x ∈ U0.

If such an h does not exist, we say that catM,Y (B) = +∞.

Definition 2.4. Let (X,Y ) be a topological pair and (Xn)n be a sequence of
subsets of X . For any subset B of X we define the limit relative category of B
in (X,Y ), with respect to (Xn)n, by

(2.13) cat∗(X,Y )(B) = lim sup
n→∞

cat(Xn,Yn)(Bn).

Now we consider a theorem which gives an estimate of the number of critical
points of a functional, in terms of the limit relative category of its sublevels.
The theorem is proved repeating the classical arguments, using the nonsmooth
version of the classical Deformation Lemma for functions on manifolds with
boundary.

Let Y be a fixed subset of M . We set

(2.14) Bi = {B ⊂M | cat
∗
(M,Y )(B) ≥ i},

(2.15) ci = inf
B∈Bi

sup
x∈B

f(x).

We have the following multiplicity theorem.

Theorem 2.1. Let i ∈ N and assume that

(1) ci < +∞,

(2) supx∈Y f(x) < ci,
(3) the (P.S.)∗ci condition with respect to (Mn)n holds.

Then there exists a lower critical point x such that f(x) = ci. If

ci = ci+1 = · · · = ci+k−1 = c,

then

catM ({x ∈M | f(x) = c, grad−Mf(x) = 0}) ≥ k.

Proof. Let c = ci; using the (P.S.)∗c condition, with respect to (Mn)n, one can
prove that, for any neighborhood N of

Kc = {x | f(x) = c, grad−Mf(x) = 0},

there exist n0 in N and δ > 0 such that ‖grad−M‖ ≥ δ for all n ≥ n0 and all
x ∈ En\N with c − δ ≤ f(x) ≤ c + δ. Moreover it is not difficult to see that,

for all n, the function f̃n : En → R ∪ {+∞} defined by f̃n = f(x), if x ∈ Mn,

f̃n(x) = +∞, otherwise, is φ-convex of order two, according to the definitions
of [5]. Then the conclusion follows using the same arguments of [1, 8] and the
nonsmooth version of the classical Deformation Lemma. �
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Now we state the following multiplicity result (for the proof see Theorem
4.6 of [8]) which will be used in the proof of our main theorem.

Theorem 2.2. Let E be a Hilbert space and let E = X1⊕X2⊕X3, where X1,

X2, X3 are three closed subspaces of E with X1, X2 of finite dimension. For

a given subspace X of E, let PX be the orthogonal projection from E onto X.

Set

C = {x ∈ E | ‖PX2
x‖ ≥ 1}

and let f : W → R be a C1,1 function defined on a neighborhood W of C. Let

1 < ρ < R, R1 > 0. We define

∆ = {x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, 1 ≤ ‖x2‖ ≤ R},

Σ = {x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, ‖x2‖ = 1}

∪ {x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ ≤ R1, ‖x2‖ = R}

∪ {x1 + x2| x1 ∈ X1, x2 ∈ X2, ‖x1‖ = R1, 1 ≤ ‖x2‖ ≤ R},

S = {x ∈ X2 ⊕X3| ‖x‖ = ρ},

B = {x ∈ X2 ⊕X3| ‖x‖ ≤ ρ}.

(a) Assume that

sup f(Σ) < inf f(S)

and

(b) Assume that the (P.S.)c condition holds for f on C, with respect to the

sequence (Cn)n, ∀c ∈ [α, β], where

α = inf f(S), β = sup f(∆).

(c) Moreover we assume β < +∞ and f |X1⊕X3
has no critical points z in

X1 ⊕X3 with α ≤ f(z) ≤ β.
Then there exist two lower critical points z1, z2 for f on C such that α ≤
f(zi) ≤ β, i = 1.2.

3. Existence of two solutions on Ej0

Throughout this section we assume that H satisfies the conditions (H1)-
(H3), λ /∈ Z and λ < 0. Let I(z) be the functional defined in Section 2, i.e.,

I(z) =
1

2
(‖|Aǫ|

1
2 z+‖

2
L2 + ‖|Aǫ|

1
2M+z0‖

2
L2 − ‖(−|Aǫ|)

1
2 z−‖

2
L2

− ‖(−|Aǫ|)
1
2M−z0‖

2
L2)− ψǫ(z),

where ψǫ(z) = ψ(z) + ǫ
2‖z‖

2
L2, ψ(z) =

∫ 2π

0
[λ2 z(t)

2 +H(t, z(t))]dt.
We shall show that the functional I(z) satisfies the geometric assumptions

of Theorem 2.2.

Lemma 3.1 ((P.S.)∗ condition). Assume that H satisfies the conditions (H1)-
(H3) and λ /∈ Z. Then I(z) satisfies the (P.S.)∗γ condition with respect to (En)n
for any γ ∈ R.
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Proof. Let (kn)n and (zn)n be two sequences such that kn → +∞, and for any
sequence (zn)n with zn ∈ Ekn

,

I(zn)→ γ

and

DIkn
(zn)→ θ,

where Ikn
is a restriction of I on Ekn

and θ = (0, . . . , 0). It follows from
DIkn

(zn)→ θ that

PEkn
zn − PEkn

A−1
ǫ ((λ + ǫ)zn +Hz(t, zn(t))) −→ θ,

where A−1
ǫ is a compact operator. We claim that (zn)n is bounded. By con-

tradiction, we suppose that ‖zn‖ → ∞. If wn = zn
‖zn‖

, we can suppose that

wn ⇀ w0 weakly for some w0 ∈ E. We have

0←− 〈PEkn
wn −A

−1
ǫ PEkn

((λ + ǫ)wn +
Hz(t, zn(t))

‖zn‖
), wn〉

= PEkn
〈wn, wn〉 − 〈A

−1
ǫ PEkn

((λ+ ǫ)wn +
Hz(t, zn(t))

‖zn‖
), wn〉.

Since A−1
ǫ is a compact operator, (λ + ǫ)wn is bounded and Hz(t,zn(t))

‖zn‖
→ 0,

A−1
ǫ (PEkn

((λ + ǫ)wn + Hz(t,zn(t))
‖zn‖

)) converges to A−1
ǫ ((λ + ǫ)w0) and we have

0 = 〈w0, w0〉 − 〈A
−1
ǫ ((λ + ǫ)w0), w0〉 = ‖w0‖

2 − 〈A−1
ǫ (λ + ǫ))w0, w0〉,

from which w0 is a solution of the equation

Aǫw = (λ+ ǫ)w.

Since λ /∈ σ(A), w0 = 0, which is a contradiction to the fact that ‖w0‖ = 1.
Thus (zn)n is bounded. We can suppose that zn ⇀ z0 weakly in E for some z0
in E. We have

〈PEkn
DI(zn), P+zn + P−zn〉

= ‖PEkn
P+zn‖

2 − ‖PEkn
P−zn‖

2

− PEkn

∫ 2π

0

(λzn(t) + ǫzn(t) +Hz(t, zn))(P+zn + P−zn)→ 0.

By (H1) and the boundedness of Hz(t, zn) · (P+zn + P−zn),

lim
n→∞

‖PEkn
P+zn‖

2 − ‖PEkn
P−zn‖

2 =

∫ 2π

0

(λz(t) + ǫz(t) +Hz(t, z))z,

i.e., ‖PEkn
P+zn‖

2 − ‖PEkn
P−zn‖

2 converges strongly, which implies that, up
to a subsequence, PEkn

zn converges strongly to z, and we prove the lemma and
have

DI(z) = lim
n→∞

PEkn
DI(zn) = 0,

so z is the critical point of I. �
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Let us set

X1 = E(−∞,j1], X2 = Ej0 , X3 = E+.

Then E is the topological direct sum of the subspaces X1, X2 and X3. Let PX

be the orthogonal projection from E onto X . Let us set

(3.1) C = {z ∈ E | ‖PX2
z‖ ≥ 1}.

Then C is the smooth manifold with boundary. Let Cn = C ∩ En. Let us
define a functional Ψ : E \ {X1 ⊕X3} → E by

(3.2) Ψ(z) = z −
PX2

z

‖PX2
z‖

= PX1⊕X3
z + (1 −

1

‖PX2
z‖

)PX2
z.

We have

(3.3) ∇Ψ(z) · w = w −
1

‖PX2
z‖

(PX2
w − 〈

PX2
z

‖PX2
z‖
, w〉

PX2
z

‖PX2
z‖

).

Let us define the constrained functional Ĩ : C → R by

(3.4) Ĩ = I ◦Ψ.

Then Ĩ ∈ C1,1
loc . It turns out that

(3.5)

grad−C Ĩ(z̃) =

{

PX1⊕X3
DI(z) + (1− 1

‖PX2
z̃‖E

)PX2
DI(z) if z ∈ int(C),

PX1⊕X3
DI(z)− 〈DI(z),

PX2
z̃

‖PX2
z̃‖E

〉+
PX2

z̃

‖PX2
z̃‖E

if z ∈ ∂C.

We note that if z̃ is the critical point of Ĩ and lies in the interior of C, then
z = Ψ(z̃) is the critical point of I. Thus it suffices to find the critical points,

which lies in the interior of C, for Ĩ. We also note that

(3.6) ‖grad−C Ĩ(z̃)‖E ≥ ‖PX1⊕X3
DI(Ψ(z̃))‖E ∀z̃ ∈ ∂C.

Let us set

S23(ρ) = {z ∈ X2 ⊕X3 | ‖z‖E = ρ}, ρ > 0,

˜S23(ρ) = Ψ−1(S23(ρ)),

∆12(R,R1) = {z1 + z2 | z1 ∈ X1, z2 ∈ X2, ‖z1‖E ≤ R1, 1 ≤ ‖z2‖E ≤ R},

˜∆12(R,R1) = Ψ−1(∆12(R,R1))

Σ12(R,R1) = {z1 + z2 | z1 ∈ X1, z2 ∈ X2, ‖z1‖E ≤ R1, ‖z2‖E = 1}

∪ {z1 + z2 | z1 ∈ X1, z2 ∈ X2, ‖z1‖E ≤ R1, ‖z2‖E = R}

∪ {z1 + z2 | z1 ∈ X1, z2 ∈ X2, ‖z1‖E = R1, 1 ≤ ‖z2‖E ≤ R},

˜Σ12(R,R1) = Ψ−1(Σ12(R,R1)).

We will prove the multiplicity result by using Theorem 2.2 for Ĩ, C, ˜S23(ρ),
˜∆12(R,R1) and ˜Σ12(R,R1). Now we have the following linking geometry for

Ĩ.
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Lemma 3.2. Assume that H satisfies the conditions (H1)-(H3), and that j0,
j1 are negative integers with j1 < j0 < 0. Then there exist small numbers

δ̄ > 0, R > ρ > 0, R1 > 0, R > 1 and ρ > 0 with R > ρ such that for any λ
with j1 − δ̄ ≤ λ < j0 < 0,

(3.7) sup
z̃∈ ˜Σ12(R,R1)

Ĩ(z̃) < 0 < inf
w̃∈ ˜S23(ρ)

Ĩ(w̃).

Moreover

−∞ < inf
w̃∈ ˜B23(ρ)

Ĩ(w̃), sup
z̃∈ ˜∆12(R,R1)

Ĩ(z̃) <∞.

Proof. It suffices to show that there exist δ̄ > 0, R > ρ > 0, R1 > 0 and R > 1
such that for any λ with j1 − δ̄ ≤ λ < j0 < 0, z = ψ(z̃), w = ψ(w̃),

sup
z∈Σ12(R,R1)

I(z) < inf
w∈S23(ρ)

I(w)

because

(3.8) sup
z̃∈ ˜Σ12(R,R1)

Ĩ(z̃) = sup
z∈Σ12(R,R1)

I(z), inf
w̃∈ ˜S23(ρ)

Ĩ(w̃) = inf
w∈S23(ρ)

I(w).

Let z = z1 + z2 ∈ X1 ⊕X2. By (H2), we have

I(z) =
1

2
(‖|Aǫ|

1
2 z+‖

2
L2 + ‖|Aǫ|

1
2M+z0‖

2 − ‖(−|Aǫ|)
1
2 z−‖

2
L2

− ‖(−|Aǫ|)
1
2M−z0‖

2)−

∫ 2π

0

[
1

2
(λ+ ǫ)z2 +H(t, z(t))]dt

≤
j1 + ǫ− λ− ǫ

2
‖z1‖

2
L2 +

j0 + ǫ− λ− ǫ

2
‖z2‖

2
L2 −

∫ 2π

0

[α1|z|
p1+1 − β1]dt

≤
δ̄

2
‖z1‖

2
L2 +

j0 + ǫ− λ− ǫ

2
‖z2‖

2
L2 −

∫ 2π

0

[α1|z|
p1+1 − β1]dt.

Since j0 − λ > 0 and p1 + 1 > 2, there exist small numbers δ̄ > 0, R > 0,
R1 > 0 and R > 1 such that for any λ with j1 − δ̄ ≤ λ < j0 < 0, z ∈ X1 ⊕
X2, supz∈Σ12(R,R1) I(z) < 0. If z ∈ ∆12(R,R1), then supz∈∆12(R,R1) I(z) <
δ̄
2‖z1‖

2
L2 +

j0−λ
2 ‖z2‖

2 + 2πβ1 <∞. On the other hand, if z ∈ X2 ⊕X3, then

I(z) =
1

2
(‖|Aǫ|

1
2 z+‖

2
L2 + ‖|Aǫ|

1
2M+z0‖

2 − ‖(−|Aǫ|)
1
2 z−‖

2
L2

− ‖(−|Aǫ|)
1
2M−z0‖

2)−

∫ 2π

0

[
1

2
(λ+ ǫ)z2 +H(t, z(t))]dt

≥
j0 + ǫ− λ− ǫ

2
‖z‖2L2 −

∫ 2π

0

α2|z|
p2+1dt.

Since j0 − λ > 0 and p2 + 1 > 2, there exists a small number ρ > 0 with
R > ρ > 0 such that for z ∈ X2 ⊕X3, infz∈S23(ρ) I(z) > 0. If z ∈ B23(ρ), then
infz∈B23(ρ) I(z) > −∞. Thus we prove the lemma. �
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Lemma 3.3. Assume that H satisfies the conditions (H1)-(H3), and that j0,

j1 are negative integers with j1 < j0 < 0. Then for any λ with j1 ≤ λ < 0, Ĩ
has no critical point z̃ such that Ĩ(z̃) = c and z̃ ∈ ∂C, where inf

z̃∈ ˜B23(ρ)
Ĩ(z̃) ≤

c ≤ sup
z̃∈ ˜Σ12(R,R1)

Ĩ(z̃) < 0.

Proof. It suffices to prove that I has no critical point z = ψ(z̃) such that
I(z) = c and z ∈ X1⊕X3. We notice that from Lemma 3.2, for fixed z1 ∈ X1,
the functional z3 7→ I(z1+ z3) is weakly convex in X3, while, for fixed z3 ∈ X3,
the functional z1 7→ I(z1 + z3) is strictly concave in X1. Moreover (0, 0) is a
critical point in X1 ⊕X3 with I(0, 0) = 0. So if z = z1 + z3 is another critical
point for I|X1⊕X3

, then we have

0 = I(0, 0) ≤ I(z3) ≤ I(z1 + z3) ≤ I(z1) ≤ I(0, 0) = 0.

So I(z1 + z3) = I(0, 0) = 0. �

Lemma 3.4. Assume that H satisfies the conditions (H1)-(H3), and that j0,
j1 are negative integers with j1 < j0 < 0. Then there exists a small number

δ̂ > 0 such that for any λ with j1 − δ̂ ≤ λ < j0 < 0, Ĩ has no critical point z̃
such that inf

z̃∈ ˜B23(ρ)
Ĩ(z̃) ≤ Ĩ(z̃) ≤ sup

z̃∈ ˜Σ12(R,R1)
Ĩ(z̃) < 0 and z̃ ∈ ∂C.

Proof. It suffices to show that I(z) has no critical point z such that

inf
z∈B23(ρ)

I(z) ≤ I(z) ≤ sup
z∈Σ12(R,R1)

I(z) < 0 and z ∈ X1 ⊕X3.

By contradiction we suppose that we can find two sequences (λn)n in R with

j1 − δ̂ ≤ λn < j0 < 0 and (zn)n in X1 ⊕ X3 such that λn → λ ∈ [j1, j0),
infz∈B23(ρ) I(z) ≤ I(z) ≤ supz∈Σ12(R,R1) I(z) < 0 and DI|X1⊕X3

(zn) = 0. We

claim that (zn)n is bounded. If not we can suppose that ‖zn‖ → +∞ and set
wn = zn

‖zn‖
. Since wn is bounded, up to a subsequence wn converges weakly to

w0, for some w0 ∈ X1 ⊕X3. Furthermore since PX1
zn ∈ E−, ‖P+PX1

zn‖ = 0
and we have

〈DI(zn), PX1
zn〉(3.9)

= ‖P+PX1
zn‖

2 − ‖P−PX1
zn‖

2 − 〈(λ + ǫ)zn +Hz(t, zn), PX1
zn〉

= − ‖P−PX1
zn‖

2 − 〈(λ+ ǫ)zn +Hz(t, zn), PX1
zn〉 −→ 0.

Moreover since PX3
zn ∈ E+, ‖P−PX3

zn‖ = 0 and we have

(3.10) 〈DI(zn), PX3
zn〉 = ‖P+PX3

zn‖
2−〈(λ+ ǫ)zn+Hz(t, zn), PX3

zn〉 −→ 0.

Adding (3.9) to (3.10), we have
(3.11)
lim
n→∞

(‖P+PX3
zn‖

2 − ‖P−PX1
zn‖

2) = lim
n→∞

〈(λ+ ǫ)zn +Hz(t, zn), PX1⊕X3
zn〉.

Dividing (3.11) by ‖zn‖
2 and going to the limit, we get

(3.12) ‖P+PX3
w0‖

2 − ‖P−PX1
w0‖

2 = 〈(λ+ ǫ)w0, PX1⊕X3
w0〉,
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from which w0 is the unique solution of the linear equation

Aǫz = (λ+ ǫ)z.

Since λ /∈ σ(A), w0 = 0, which is a contradiction to the fact ‖w0‖ = 1.
Thus (zn)n is bounded. By the same arguments used for (wn)n, we get,
up to a subsequence, (zn)n converges strongly to a point z ∈ X1 ⊕ X3 with
infz∈B23(ρ) I(z) ≤ I(z) ≤ supz∈Σ12(R,R1) I(z) < 0 and DI|X1⊕X3

(z) = 0, which
contradicts Lemma 3.3. Thus we prove the lemma. �

Lemma 3.5. The functional −Ĩ satisfies the (P.S.)∗−c̃ condition with respect

to (Cn)n for any −c̃ such that

0 < inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z̃) ≤ −c̃ ≤ sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃).

Proof. Let (hn)n be a sequence in N with hn → +∞ and (z̃n)n be a sequence

in C with z̃n ∈ Chn
for all n, −Ĩ(z̃n)→ −c̃ and grad−Chn

(−Ĩ|Ehn
)(z̃n)→ 0. Set

zn = Ψ(z̃n). Then I(zn) → c. We first consider the case z̃n /∈ ∂Chn
for large

n. Since for large n PEn
◦ PX2

= PX2
◦ PEn

= PX2
, we have

grad−Chn

(−Ĩ)(z̃n) = PEhn
Ψ′(z̃n)D(−I)(zn) = Ψ′(z̃n)(PEhn

D(−I)(zn))

= PEhn
PX1⊕X3

D(−I)(zn) + PEhn
(1 −

1

‖PX2
z̃n‖E

)PX2
D(−I)(zn)→ 0.

Thus

PX1⊕X3
PEhn

D(−I)(zn)→ 0 and

(1−
1

‖PX2
z̃n‖E

)PX2
D(−I)(zn)→ 0.

It is impossible that ‖PX2
z̃n‖E → 1 because dist(zn, X2)→ 0. Thus

PEhn
D(−I)(zn)→ 0.

Using (P.S.)∗c for I of Lemma 3.1 it follows that (zn)n has a subsequence
(zkn

)n such that zkn
→ z for some z in X2. Since Ψ is invertible in int(C),

˜zkn
→ Ψ−1(z). Next we consider the case z̃n ∈ ∂Chn

for infinitely many n. We
claim that this case cannot occur. If z̃n ∈ ∂Chn

, then ‖PX2
z̃n‖E = 1. Thus we

have

grad−Chn

(−Ĩ)(z̃n) = PEhn
(PX1⊕X3

D(−I)(zn)− 〈D(−I)(zn), PX2
z̃n〉

+PX2
z̃n)

→ 0.

Using the properties of the projections, we get

PEhn
PX1⊕X3

D(−I)(zn)→ 0,

which contradicts to Lemma 3.3. In fact, let z̃ be the limit point of the subse-
quence ˜zkn

of z̃n, then z̃ ∈ ∂C and

grad−C(−Ĩ)(z̃) = PX1⊕X3
grad(−I)(z)− 〈grad(−I)(z), PX2

z̃〉PX2
z̃. �
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Theorem 3.1 (Existence of two solutions on Ej0 ). Assume that H satisfies the

conditions (H1)-(H3), and that j0, j1 are negative integers with j1 < j0 < 0.
Let λ /∈ Z and λ < 0. Then there exists a small number δ1 > 0 such that

for any λ with j1 − δ1 < λ < j0 < 0, system (1.1) has at least two nontrivial

2π-periodic weak solutions on Ej0 .

Proof. We note that the critical points of the functional Ĩ coincide with the
critical points of the functional −Ĩ. Thus it suffices to find the number of the
critical points of −Ĩ, which is appropriate functional for applying Theorem 2.2,
to find the number of the critical points of I. Let us set

δ1 = min{δ̄, δ̂},

where δ̄ is a small number introduced in Lemma 3.2 and δ̂ is a small number
introduced in Lemma 3.4. By Lemma 3.2, there exist R > ρ > 0, R1 > 0,
R > 1 and ρ > 0 with R > ρ such that for any λ with j1 − δ1 < λ < j0 < 0,

sup
z̃∈ ˜S23(ρ)

(−Ĩ)(z̃) = sup
z∈S23(ρ)

(−I)(z) < 0 < inf
z∈Σ12(R,R1)

(−I)(z)

= inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z).

and

inf
z̃∈ ˜∆12(R,R1)

(−Ĩ)(z) = − sup
z̃∈ ˜∆12(R,R1)

Ĩ(z) > −∞,

sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃) = − inf
z̃∈ ˜B23(ρ)

Ĩ(z̃) <∞,

so the condition (a) of Theorem 2.2 for the functional −Ĩ is satisfied. By Lemma

3.5, the functional −Ĩ satisfies the (P.S.)∗−c̃ condition with respect to (Cn)n for

any −c̃ ∈ [α, β], where α = inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z̃) and β = sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃),

so the condition (b) of Theorem 2.2 is satisfied. By Lemma 3.4, for any λ with

j1 − δ1 ≤ λ < j0 < 0, Ĩ has no critical point z̃ such that inf
z̃∈ ˜B23(ρ)

Ĩ(z̃) ≤

Ĩ(z̃) ≤ sup
z̃∈ ˜Σ12(R,R1)

Ĩ(z̃) < 0 and z̃ ∈ ∂C, so the condition (c) of Theorem

2.2 is satisfied. Thus by Theorem 2.2, for any λ with j1 − δ1 < λ < j0 < 0
there exists two lower critical points z̃1, z̃2 for −Ĩ on C such that

0 < inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z̃) ≤ (−Ĩ)(z̃i) ≤ sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃), i = 1, 2.

Thus the functional I has at least two lower critical points z1, z2 on X2 with

inf
z∈B23(ρ)

I(z) ≤ I(zi) ≤ sup
z∈Σ12(R,R1)

I(z) < 0, i = 1, 2.

Thus system (1.2) has at least two nontrivial solutions on X2 = Ej0 . Thus
Theorem 3.1 is proved. �
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4. Existence of two solutions on Ej1 and proof of Theorem 1.1

Let us set

X1 = E(−∞,j1−1], X2 = Ej1 , X3 = E[j0,∞).

Then E is the topological direct sum of the subspaces X1, X2 and X3. Let PX

be the orthogonal projection from E onto X .

Lemma 4.1. Assume that H satisfies the conditions (H1)-(H3), and that j0,
j1 are negative integers with j1 < j0 < 0. Then there exist small numbers

δ2 > 0, R′ > ρ′ > 0, R′
1 > 0, R′ > 1 and ρ′ > 0 with R′ > ρ′ such that for any

λ with j1 − δ2 < λ < j1 < j0 < 0,

(4.1) sup
z̃∈ ˜Σ12(R′,R′

1
)

Ĩ(z̃) < 0 < inf
w̃∈ ˜S23(ρ′)

Ĩ(w̃).

Moreover

−∞ < inf
w̃∈ ˜B23(ρ′)

Ĩ(w̃), sup
z̃∈ ˜∆12(R′,R′

1
)

Ĩ(z̃) <∞.

Proof. It suffices to show that there exist δ2 > 0, R′ > ρ′ > 0, R′
1 > 0 and

R′ > 1 such that for any λ with j1−δ2 < λ < j1 < j0 < 0, z = ψ(z̃), w = ψ(w̃),

sup
z∈Σ12(R′,R′

1
)

I(z) < inf
w∈S23(ρ′)

I(w)

because

(4.2) sup
z̃∈ ˜Σ12(R′,R′

1
)

Ĩ(z̃) = sup
z∈Σ12(R′,R′

1
)

I(z), inf
w̃∈ ˜S23(ρ′)

Ĩ(w̃) = inf
w∈S23(ρ′)

I(w).

Let z = z1 + z2 ∈ X1 ⊕X2. Then ‖|Aǫ|
1
2 z+‖

2
L2 = 0, ‖|Aǫ|

1
2M+z0‖

2
L2 = 0. By

(H2), we have

I(z) =
1

2
(‖|Aǫ|

1
2 z+‖

2
L2 + ‖|Aǫ|

1
2M+z0‖

2 − ‖(−|Aǫ|)
1
2 z−‖

2
L2

− ‖(−|Aǫ|)
1
2M−z0‖

2)−

∫ 2π

0

[
1

2
(λ+ ǫ)z2 +H(t, z(t))]dt

≤
j1 + ǫ− λ− ǫ

2
‖z2‖

2
L2 −

∫ 2π

0

[α1|z|
p1+1 − β1]dt

≤
δ2
2
‖z1‖

2
L2 −

∫ 2π

0

[α1|z|
p1+1 − β1]dt.

Since j1 − λ > 0 and p1 + 1 > 2, there exist small numbers δ2 > 0, R′ > 0,
R′

1 > 0 and R′ > 1 such that for any λ with j1−δ2 < λ < j1 < j0 < 0, z ∈ X1⊕
X2, supz∈Σ12(R′,R′

1
) I(z) < 0. If z ∈ ∆12(R

′, R′
1), then supz∈∆12(R′,R′

1
) I(z) <

δ2
2 ‖z1‖

2
L2 + 2πβ1 <∞. On the other hand, if z ∈ X2 ⊕X3, then

I(z) =
1

2
(‖|Aǫ|

1
2 z+‖

2
L2 + ‖|Aǫ|

1
2M+z0‖

2 − ‖(−|Aǫ|)
1
2 z−‖

2
L2
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− ‖(−|Aǫ|)
1
2M−z0‖

2)−

∫ 2π

0

[
1

2
(λ+ ǫ)z2 +H(t, z(t))]dt

≥
j1 + ǫ− λ− ǫ

2
‖z‖2L2 −

∫ 2π

0

α2|z|
p2+1dt.

Since j1 − λ > 0 and p2 + 1 > 2, there exists a small number ρ′ > 0 with
R′ > ρ′ > 0 such that for z ∈ X2 ⊕ X3, infz∈S23(ρ′) I(z) > 0. If z ∈ B23(ρ

′),
then infz∈B23(ρ′) I(z) > −∞. Thus we prove the lemma. �

Lemma 4.2. For any Λ with j1− 1 < Λ < j1 < 0, there exists Γ < 0 such that

for any λ with j1 − 1 < Λ < λ < j1 < j0 < 0, if z̃ is a critical pint for Ĩ|X1⊕X3

with Γ ≤ Ĩ(z̃) ≤ 0, then z̃ = θ.

Proof. By contradiction, we can suppose that there exist Λ < 0, a sequence
(λn)n such that λn → λ ∈ (Λ, j1), and a sequence (zn)n in X1 ⊕X3 such that
I(zn)→ 0 and PX1⊕X3

DI(zn) = θ. We claim that (zn)n is bounded. If not we
suppose that ‖zn‖ → +∞. Let us set wn = zn

‖zn‖
. We have up to a subsequence

that wn ⇀ w0 weakly for some w0 ∈ X1 ⊕X3. Furthermore

0

(4.3)

= 〈DI(zn), PX1⊕X3
zn〉

= ‖P+PX1⊕X3
zn‖

2 − ‖P−PX1⊕X3
zn‖

2 − 〈(λn + ǫ)zn +Hz(t, zn), PX1⊕X3
zn〉.

Dividing (4.3) by ‖zn‖
2 and going to the limit as n→∞, we have

‖P+w0‖
2 − ‖P−w0‖

2 = 〈(λ + ǫ)w0 +
Hz(t, zn)

‖zn‖2
, PX1⊕X3

w0〉

= 〈((λ + ǫ)w0, w0)〉,

from which w0 is a solution of the equation

Aǫw = (λ+ ǫ)w.

Since λ /∈ σ(A), w0 = 0, which is a contradiction to the fact that ‖w0‖ = 1.
Thus (zn)n is bounded. We can suppose that zn ⇀ z0 weakly in E, for some z0
in E. We claim that, up to a subsequence, (zn)n converges strongly to a point
z ∈ X1 ⊕X3. We have

(4.4) 0 = 〈PX1⊕X3
DI(zn), zn〉 = 2I(zn) +

∫ 2π

0

[2H(t, zn)−Hz(t, zn) · zn]dt.

It follows from (4.4) that

lim
n→∞

∫ 2π

0

Hz(t, zn) · zndt = 2 lim
n→∞

∫ 2π

0

H(t, zn)dt.

It follows from (4.3) that

lim
n→∞

[‖P+PX1⊕X3
zn‖

2 − ‖P−PX1⊕X3
zn‖

2]
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= lim
n→∞

[〈(λn + ǫ)zn +Hz(t, zn), PX1⊕X3
zn〉]

= lim
n→∞

∫ 2π

0

[(λn + ǫ)z2n + 2H(t, zn)]dt.

Thus ‖P+PX1⊕X3
zn‖

2 − ‖P−PX1⊕X3
zn‖

2 converges strongly, so (PX1⊕X3
zn)n

converges strongly to a point z ∈ X1 ⊕X3. We claim that z = θ. We assume
that z 6= θ. By (H2),

2α1‖z‖
p1+1
L2 − 4πβ1 ≤ 2

∫ 2π

0

H(t, z(t))dt ≤ 2α2‖z‖
p2+1
L2

for some 1 < p1 ≤ p2 < 2p1 + 1, α1 > 0, α2 > 0, β1 ≥ 0. We also have

0 = 〈DI(zn), PX1
zn〉

= ‖P+PX1
zn‖

2 − ‖P−PX1
zn‖

2 − 〈(λn + ǫ)zn +Hz(t, zn), PX1
zn〉.

Since ‖P+PX1
zn‖

2 = 0,

(4.5) −‖P−PX1
zn‖

2 = 〈(λn + ǫ)zn +Hz(t, zn), PX1
zn〉.

If z ∈ X1, then

−‖PX1
z‖2 ≤ (j1 − 1 + ǫ)‖PX1

z‖2L2 for j1 − 1 < 0

and
(4.6)

(j1−1+ ǫ)‖PX1
z‖2L2 ≥ −‖PX1

z‖2 ≥ (λ+ ǫ)‖PX1
z‖2L2 +2α1‖PX1

z‖p1+1
L2 −4πβ1.

If z ∈ X3, then

‖PX3
z‖2 ≤ ‖PX3

z‖2L2.

and

(4.7) 0 < ‖PX3
z‖2L2 ≤ ‖PX3

z‖2 ≤ (λ+ ǫ)‖PX3
z‖2L2 + 2α2‖PX3

z‖p2+1
L2 .

Adding (4.6)×(−1) to (4.7), we have

(λ− j1 + 1)‖PX1
z‖2L2 − (λ + ǫ)‖PX3

z‖2L2

≤ − 2α1‖PX1
z‖p1+1

L2 + 4πβ1 + 2α2‖PX3
z‖p2+1

L2 .

The left hand side of the above inequality is positive but the right hand side is
not always positive, which is a contradiction. Thus z = θ. �

Lemma 4.3. The functional −Ĩ satisfies the (P.S.)∗−c̃ condition with respect

to (Cn)n for any −c̃ such that

0 < inf
z̃∈ ˜Σ12(R′,R′

1
)
(−Ĩ)(z̃) ≤ −c̃ ≤ sup

z̃∈ ˜B23(ρ′)

(−Ĩ)(z̃).

Proof. The proof of Lemma 4.3 has the same process as that of Lemma 3.5. �
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Theorem 4.1 (Existence of two solutions on Ej1 ). Assume that H satisfies the

conditions (H1)-(H3), and that j0, j1 are negative integers with j1 < j0 < 0.
Let λ /∈ Z and λ < 0. Then there exists a small number δ2 > 0 such that

for any λ with j1 − δ2 < λ < j1 < 0, system (1.1) has at least two nontrivial

2π-periodic weak solutions on Ej1 .

Proof. We note that the critical points of the functional Ĩ coincide with the
critical points of the functional −Ĩ. Thus it suffices to find the number of the
critical points of −Ĩ, which is appropriate functional for applying Theorem 2.2,
to find the number of the critical points of I. By Lemma 4.1, there exist small
numbers δ2 > 0, R′ > ρ′ > 0, R′

1 > 0, R′ > 1 and ρ′ > 0 with R′ > ρ′ such
that for any λ with j1 − δ2 < λ < j1 < j0 < 0,

sup
z̃∈ ˜Σ12(R′,R′

1
)

Ĩ(z̃) < 0 < inf
w̃∈ ˜S23(ρ′)

Ĩ(w̃),

so the condition (a) of Theorem 2.2 for the functional −Ĩ is satisfied. By

Lemma 4.3, the functional −Ĩ satisfies the (P.S.)∗−c̃ condition with respect to
(Cn)n for any −c̃ such that

0 < inf
z̃∈ ˜Σ12(R′,R′

1
)
(−Ĩ)(z̃) ≤ −c̃ ≤ sup

z̃∈ ˜B23(ρ′)

(−Ĩ)(z̃),

so the condition (b) of Theorem 2.2 is satisfied. By Lemma 4.2, for any Λ
with j1 − 1 < Λ < j1, there exists Γ < 0 such that for any λ with j1 − 1 <
Λ < λ < j1 < j0 < 0, if z̃ is a critical pint for Ĩ|X1⊕X3

with Γ ≤ Ĩ(z̃) ≤ 0,

then z̃ = 0. Thus Ĩ has no critical point z̃ such that inf
z̃∈ ˜B23(ρ′) Ĩ(z̃) ≤ Ĩ(z̃) ≤

sup
z̃∈ ˜Σ12(R′,R′

1
) Ĩ(z̃) < 0 and z̃ ∈ ∂C, so the condition (c) of Theorem 2.2 is

satisfied. Thus by Theorem 2.2, for any λ with j1− δ2 < λ < j1 < j0 < 0 there
exists two lower critical points z̃1, z̃2 for −Ĩ on C such that

0 < inf
z̃∈ ˜Σ12(R,R1)

(−Ĩ)(z̃) ≤ (−Ĩ)(z̃i) ≤ sup
z̃∈ ˜B23(ρ)

(−Ĩ)(z̃), i = 1, 2.

Thus the functional I has at least two lower critical points z1, z2 on X2 with

inf
z∈B23(ρ)

I(z) ≤ I(zi) ≤ sup
z∈Σ12(R,R1)

I(z) < 0, i = 1, 2.

Thus system (1.2) has at least two nontrivial solutions on X2 = Ej1 . Thus
Theorem 4.1 is proved. �

Proof of Theorem 1.1. Assume that H satisfies the conditions (H1)-(H3), and
that j0, j1 are negative integers with j1 < j0 < 0. Let λ /∈ Z and λ < 0. Let δ1
be the small number in Theorem 3.1 and δ2 be the small number in Theorem
4.1. Let us set

δ = min{δ1, δ2}.

The common part of (j1 − δ1, j0) and (j1 − δ2, j1) is

(j1 − δ, j1).
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Thus for any λ with j1 − δ < λ < j1 < j0 < 0, Theorem 3.1 and Theorem
4.1 hold simultaneously. Thus by Theorem 3.1, system (1.2) has at least two
nontrivial solutions on Ej0 and by Theorem 4.1, system (1.2) has at least two
nontrivial solutions on Ej1 . Thus for any λ with j1 − δ < λ < j1 < j0 < 0,
system (1.2) has at least four nontrivial solutions, two of which are on Ej0 and
two of which are on Ej1 . Thus we prove Theorem 1.1. �
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