• Title/Summary/Keyword: superparamagnetic nanoparticles

Search Result 84, Processing Time 0.023 seconds

Studies on the Synthesis and Magnetic Properties of Cobalt Nanoparticles in the Polymer Film (코발트 나노 입자가 도입된 초상자성 고분자 박막의 제조 및 자성 연구)

  • Kim, Y.;Yoon, M.;Kim, Y.M.;Volkov, V.;Park, I.W.;Song, H.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • Superparamagnetic properties of self-aggregated cobalt nanoparticles in the perfluorinated ion-exchange polymeric membrane (MF-4SK) prepared by ion-exchange and recovery methods were investigated by transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometer at various temperatures. Our experimental results show that cobalt nanoparticles in MF-4SK for the concentration of $7.8{\times}10^{19}$ atoms per 1 g of polymer membrane exhibit superparamagnetic properties above the average blocking temperature ($T_{B}$), which is determined to be around 185 K at applied field of 500 Oe. The average particle radius of 4.0 nm achieved from Langevin function fit is in good agreement with TEM observations. This experimental evidence suggests that cobalt nanoparticles in polymer film obey a single domain theory. The results are discussed in the light of current theory for the superparamagnetic behavior of magnetic nanoparticles.

Development of Superparamagnetic Iron Oxide Nanoparticles (SPIOs)-Embedded Chitosan Microspheres for Magnetic Resonance (MR)-Traceable Embolotherapy

  • Kang, Myung-Joo;Oh, Il-Young;Choi, Byung-Chul;Kwak, Byung-Kook;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.98-103
    • /
    • 2009
  • Superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosan microspheres were developed for magnetic resonance (MR)-traceable embolotherapy. SPIOs-loaded chitosan microspheres were prepared by emulsion and cross-linking technique and 100-200 ${\mu}m$ sized spherical microsparticles were obtained. Loading efficacy and loading amount of SPIOs in microspheres were about 40% and 0.26-0.32%, respectively, when measured by inductively coupled plasma atomic emission spectroscopy. Within 30 days, about 60% of the incorporated SPIOs were released from low cross-linked microspheres, whereas only about 40% of SPIOs was released from highly cross-linked microspheres. Highly cross-linked microspheres were more efficient for lower degree of swelling leading to secure entrapment of SPIOs in matrix. Prepared novel embolic microspheres are expected to be practically applicable for traceable embolotherapy with high resolution and sensitivity through magnetic resonance imaging (MRI).

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D.;Naidu, K. Chandra Babu;Nazeer, K. Prem;Rafi, M. Mohamed;kumar, G. Ramesh;Sathyaseelan, B.;Killivalavan, G.;Begam, A. Ayisha
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.230-238
    • /
    • 2018
  • Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.

Ultra-Specific Enrichment of GST-Tagged Protein by GSH-Modified Nanoparticles

  • Lee, Yeon-Ji;Park, Jong-Moon;Huh, Ji-Young;Kim, Min-Sik;Lee, Je-Sun;Palani, Arudra;Lee, Kwang-Yeol;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1568-1572
    • /
    • 2010
  • The selective isolation of specific proteins from complex protein mixtures by nanoparticles is reported. Glutathionemodified superparamagnetic nanoparticles were used to purify specific proteins fused with glutathione S-transferase via enzyme-substrate interactions. They demonstrated greatly improved selectivity and efficiency over micron sized capturing beads. The ultra-specific enrichment of target proteins was confirmed by both SDS-PAGE and LC/MS/MS experiments.

Magnetic Force-based Immunochip using Superparamagnetic Nanoparticles

  • Park, Je-Kyun;Kim, Kyu-Sung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.19-19
    • /
    • 2005
  • This paper reports a novel magnetic force-based microfluidic immunoassay using microbeads and magnetic nanoparticles. The magnetic force-based immunoassay was devised first and successfully applied to detect the rabbit IgG as the model analyte of microfluidic sandwich immunoassay. The microchannels were fabricated by poly(dimethysiloxane) (PDMS) molding processes and bonded on a slide glass by plasma treatment. At the part of the inlet, sample solution was hydrodynamically focused. The focused microbeads of sample solution were flowed through the 150 ${\mu}m$ width channel of outlet. However, when the microbeads are conjugated with the superparamagnetic nanoparticles under the applied magnetic fields, they will switch their flow path and flow through the 95 ${\mu}m$ width channel of outlet. The movements of microbeads conjugated with magnetic nanoparticles were demonstrated by magnetic field $gradients.^{1)}$ High magnetic field gradients using micro electromagnets could be applied to this detection method for high sensitivity and lower detection limit. In addition, the multiplexed $immunoassay^{2)}$ using an encoded microbead which is immobilized with a certain antibody could be possible using this detection principle.

  • PDF

Size Dependence of FMR Linewidth in Iron Oxide Nanoparticles (산화철 나노입자의 크기에 따른 강자성 공명 신호의 선폭 특성)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • We measured the ferromagnetic resonance (FMR) signal using the monodisperse iron oxide nanoparticles with size D=4.67 nm, 5.64 nm and 6.34 nm synthesized by using the thermal decomposition method, respectively. The measured ferromagnetic resonance signals were compared with the calculated ones for superparamagnetic nanoparticles with lognormal volume distribution. The FMR linewidth broadening was propositional to tanh($V^2$), where V was volume of nanoparticles. The narrow linewidth of small size nanoparticles was due to the surface spins, while the broad linewidth of large size nanoparticles was due to the bulk spins affected by the crystalline structure of iron oxide nanoparticles. The superposition of surface and bulk effect was confirmed at D=5.64 nm nanoparticles, which was near the critical size for linewidth transition from surface effect to bulk effect.

Magnetization of Magnetite Ferrofluid Studied by Using a Magnetic Balance

  • Jin, Daeseong;Kim, Hackjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1715-1721
    • /
    • 2013
  • Magnetic properties of magnetite ferrofluid are studied by measuring magnetic weights under different magnetic fields with a conventional electronic balance. Magnetite nanoparticles of 11 nm diameter are synthesized to make the ferrofluid. Magnetization calculated from the magnetic weight reveals the hysteresis and deviates from the Langevin function at high magnetic fields. Magnetic weight shifts instantaneously with magnetic field change by Neel and Brown mechanism. When high magnetic field is applied to the sample, slower change of magnetic weight is accompanied with the instantaneous shift via agglomeration of nanoparticles. The slow change of the magnetic weight shows the stretched exponential kinetics. The temporal change of the magnetic weight and the magnetization of the ferrofluid at high magnetic fields suggest that the superparamagnetic sample turns into superspin glass by strong magnetic interparticle interactions.