• Title/Summary/Keyword: supercritical

Search Result 1,095, Processing Time 0.038 seconds

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

Development of New Separation Technique, Modifier Composition Programming in Supercritical Fluid Chromatography (초임계 유체 크로마토그래피에서 새로운 분리방식인 변형제 조성 프로그래밍법 개발)

  • Kim, Hohyun;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.350-356
    • /
    • 1997
  • Supercritical Fluid Chromatography(SFC) has been developed as an analytical technique for the compounds that is difficult to analyze by conventional chromatography. Since supercritical fluid $CO_2$ is difficult to elute solutes with high polarity, modified supercritical $CO_2$, was used as a mobile phase. In conventional method, silica column which is saturated with modifier was used. However, with this method, we can not control the quantity of modifier. In this paper, we developed a new method which can control quantity of modifier mixed in supercritical fluid $CO_2$. The quantity of $H_2O$ mixed was measured with amperometric microsensor which was made by perflurosulfonate ionomer(PFSI) film. we have also obtained a good supercritical fluid chromatogram of PAH mixture by use of a modifier composition programming method.

  • PDF

Antimicrobial, Antioxidative, Elastase and Tyrosinase Inhibitory Effect of Supercritical and Hydrothermal Asparagopsis Armata Extract

  • Lee, Kwang Won;Heo, Soo Hyeon;Lee, Jinseo;Park, Su In;Kim, Miok;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.231-240
    • /
    • 2020
  • In this paper, we present to evaluate physiological activity of Asparagopsis armata extraction. After extraction with Asparagopsis armata using hydrothermal and supercritical carbon dioxide, various physiological activities were examined. The total concentration of polyphenol compounds was determined to be 18.85 mg/g of hydrothermal Asparagopsis armata extraction and 14.74 mg/g of supercritical Asparagopsis armata extraction. In DPPH radical scavenging assay, ascorbic acid was used as positive antioxidant control. In ABTS radical scavenging assay, ascorbic acid was used as positive antioxidant control. The percentage of inhibition and IC50 were measured. The IC50 of Asparagopsis armata extraction is 261.44ppm and the IC50 of supercritical Asparagopsis armata extraction is 153.98 ppm. The elastase inhibitory assay showed concentration dependence and the IC50 of hydrothermal Asparagopsis armata extraction is 3387 ppm and the IC50 of supercritical Asparagopsis armata extraction is higher than 2500 ppm. In mushroom tyrosinase inhibition experiments, tyrosinase inhibition's IC50 of supercritical Asparagopsis armata extraction was 248.06. In the SOD-like experiments, the concentration-dependent results were showed and IC50 of hydrothermal Asparagopsis armata extraction is 845.29 ppm. In the antimicrobial experiments, maximum clear zones of supercritical Asparagopsis armata extraction represented 23.00 mm in Propionibacterium acnes. In the other hand, in experiments with the same conditions, hydrothermal Asparagopsis armata extraction had no effect in all strains.

Changes of Quality Characteristics of Dongchimi by Supercritical Carbon Dioxide as Sterilization Method (초임계 이산화탄소를 이용한 살균방법이 동치미의 품질에 미치는 영향)

  • Hong, Joo-Heon;Park, Joo-Seok;Lee, Wong-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1330-1336
    • /
    • 2008
  • Here we studied the changes on quality characteristics of Dongchimi by supercritical carbon dioxide to manufacture Dongchimi of high quality. There were no distinctive changes of acidity, pH, color difference, free sugar and organic acid of the Dongchimi treated with supercritical $CO_2$, compared to the control. The content of vitamin C in Dongchimi, which was treated with supercritical $CO_2$ (at 25 MPa, $35^{\circ}C$) was 0.826 mg/mL, and was similar to that of 0.1 MPa. Unpleasant volatile compounds such as dimethyl disulfide, metyl trisulfide and methyl propyl disulfide in Dongchimi were decreased by supercritical $CO_2$; also, treatment of supercritical $CO_2$ was useful to improve flavor of Dongchimi. Polygalacturonase activity was decreased 40.3% after supercritical carbon dioxide treatment at 25 MPa and $55^{\circ}C$.

Research on the Development of the Supercritical CO2 Dual Brayton Cycle (초임계 이산화탄소 이중 브레이튼 사이클 개발 연구)

  • Baik, Young-Jin;Na, Sun Ik;Cho, Junhyun;Shin, Hyung-Ki;Lee, Gilbong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.673-679
    • /
    • 2016
  • Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

Liquefaction Characteristics in Supercritical Decomposition and Extraction of Used Automotive Tire (초임계유체에 의한 폐타이어 분해와 추출에서 오일화의 특성)

  • Kang, W.S.;Kim, J.K.;Kim, I.S.;Park, P.W.
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.350-359
    • /
    • 1999
  • Conversion and oil-yield of a used automotive tire sample in supercritical decomposition and extraction for three solvents such as water, 28% ammoina solution and ammonia, were compared. Supercritical extraction with ammonia gave the highest conversion and oil-yield at the same temperature and pressure. In this paper, supercritical ammonia was used as major solvent and tetralin acting as hydrogen-donor, was used as cosolvent. As the amount of tetralin increased, oil-yield was Increased. When a tire sample was extracted by supercritical ammonia, oil-yield was 48.8% at $280^{\circ}C$, 22.3MPa. But when the weight ratio of tetralin to tire sample (weight of tetralin/weight of tire sample) was 5, oil-yield was 61.2% at $280^{\circ}C$ and 22.3 MPa. These phenomena indicate that as radicals produced in supercritical decomposition become stable, the polymerization and the second decomposition of products may be inhibited. Supercritical extraction of a tire sample swollen by tetralin gave high oil-yield although the amount of tetralin was a little.

  • PDF

Performance Comparison of Supercritical Heat Pump for a Variety of Refrigerants (다양한 냉매를 적용한 초임계 히트펌프의 성능 비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-47
    • /
    • 2014
  • In this paper, the cycle performance analysis for the COP of supercritical heat pump using various refrigerants is presented to offer the basic design data for the operating parameters of the system. The working fluids are R134a, R22, R32, R290, R600, R600a, R1270 and R744. The operating parameters considered in this study include superheating degree of evaporator, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature in the supercritical heat pump system. The main results were summarized as follows : Superheating degree, temperature of gas cooler inlet and outlet, compressor efficiency and evaporating temperature of supercritical heat pump system have an effect on the COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. And, in comparison of COP of supercritical heat pump using various refrigerants, R32 and R600 is the highest, and R744 is the lowest among other refrigerants. From these results, it is confirmed that the COP of supercritical heat pump using R744 is higher than that using freon refrigerants such as R32 and R134a.

Synthesis of Photoresist Using Environmental-benign Supercritical $CO_2$ Processes (환경친화적인 초임계 이산화 탄소 공정을 이용한 포토레지스트의 합성)

  • 허완수;이상원;박혜진;김장엽;홍유석;유기풍
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.445-454
    • /
    • 2004
  • The requirement for a much finer line width circuits on semiconductors needs new developers such as supercritical fluid to prevent the collapse of the photoresist micro-patterns. The copolymers contain t-butyl methacrylate having an acid-cleavable t-butyl group and supercritical fluid $CO_2$ soluble perfluorinated decyl methacrylate segments. The supercritical fluid $CO_2$-philic properties of the photoresist changed to supercritical fluid $CO_2$-phobic properties after the deprotection reaction by exposure, which made the exposed resist insoluble in the supercritical fluid $CO_2$ developer. The synthesized copolymers containing more than 30% of perfluorinated decyl methacrylate were found to be soluble in supercritical fluid $CO_2$. The variation of film thickness before and after exposure was largest when the mole ratio of perfluorinated decyl methacrylate in the copolymer was 30%.

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Fabrication of poly(ethylene oxide)/clay nanocomposites using supercritical fluid process (초임계 공정을 이용한 폴리에틸렌옥사이드/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.143-150
    • /
    • 2014
  • Recently, supercritical fluid process has been widely used in material synthesis and processing due to their remarkable properties such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive solvent owing to their characteristics including non-toxic, non-flammable, chemically inert, and also it has moderate critical temperature and critical pressure. In addition, supercritical carbon dioxide would dissolve many small organic molecules and most polymers. In this study, we have prepared the poly (ethylene oxide)/clay nanocomposites using supercritical fluid as a carbon dioxide. Commercialized Cloisites-15A and Cloisites-30B used in this study, which are modified with quaternary ammonium salts. The nanocomposites of polymer/clay were characterized by XRD, TGA and DSC. Poly (ethylene oxide)/clay nanocomposites by supercritical fluid show higher thermal stability than nanocomposites prepared by melt process. In addition, supercritical fluid process would be increased dispersibility of the nanoclay in the matrix.