• Title/Summary/Keyword: superconducting tunnel junctions

Search Result 8, Processing Time 0.023 seconds

A Study on the Fabrication and Design of Superconducting Tunnel junction for Millimeter Wave Mixers (밀리미터파 믹서용 초전도 턴넬 접합 설계와 제작에 관한 연구)

  • 한석태;이창훈;서정빈;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.12-19
    • /
    • 1993
  • Because of their high sensitivity and moderate bandwidth, superconducting receivers with SIS (Superconductor Insulator Superconductor) tunnel junction mixer are now widely used for millimeter wave radio astronomy. In this paper we have introduced how to determine the parameters of SIS tunnel junction which have to be optimized to achieve a good mixer performance. From these results of optimized junction parameters determined by this methods, SIS junctions which consist of a series array of four Nb/Al-AlOx/Nb junctions with each area 3.4${\mu}m^{2}$ have been fabricated by SNEP (Selective Niobium Etching Process) and RIE (Reactive Ion Eching). Also we have tested their DC current-voltage characteristics. These SIS junctions will be used as a mixer for 100GHz band cosmic waves receiver.

  • PDF

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF

Superconducting Tunnel Junction Detectors for Mass Spectrometry

  • Ohkubo, M.;Zen, N.;Kitazume, T.;Ukibe, M.;Shiki, S.;Koike, M.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.77-81
    • /
    • 2012
  • With conventional mass spectrometry (MS), ions are separated according to mass/charge (m/z) ratios. We must speculate the z values to obtain the m values. Superconducting tunnel junction (STJ) detectors can solve this problem, and true mass spectrometry becomes possible instead of m/z spectrometry. The STJ detectors were installed in MS instruments with a variety of ion sources. As an example, we report fragmentation analysis of a non-covalent protein complex of hemoglobin.

FABRICATION OF Nb/Al SUPERCONDUCTING TUNNEL JUNCTION (Nb/Al SUPERCONDUCTING TUNNEL JUNCTION의 제작)

  • Cho, Sung-Ik;Park, Young-Sik;Park, Jang-Hyun;Lee, Yong-Ho;Lee, Sang-Kil;Kim, Sug-Whan;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.481-492
    • /
    • 2004
  • We report the successful fabrication and I-V curve superconductivity test results of the Nb/Al-based superconducting tunnel junctions. STJs with side-lengths of 20, 40, 60 and $80{\mu}m$ were fabricated by deposition of polycrystalline Nb/Al/AlOx/Al/Nb 5-layer thin films incorporated on a 3-inch Si wafer. STJ was designed by $Tanner^{TM}$ L-Edit 8.3 program, and fabricated in SQUID fabrication facility, KRISS. S-layer STJ thin-films were fabricated using UV photolithography, DC magnetron sputtering, Reactive ion etching, and CVD(Chemical Vapor Deposition) techniques. Superconducting state test for STJ was succeeded in 4K with liquid helium cooling system. Their performance indicators such ie energy gap, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor were measured from I-V curve. Fabricated Nb/Al STJ shows $11\%$ higher FWHM energy resolution than genuine Nb STJ.

Tunneling Spectra in Organic Cu-Pc/$Bi_2Sr_2CaCu_2O_{8+\delta}$ Tunnel Junctions

  • Kim, Sunmi;E, Jungyoon;Lee, Kiejin;Ishbas, Takayuki;Lee, Yang-San
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • We report the current transport properties of a normal metal/organic conductor/ superconductor tunnel junction as a novel high- $T_{c}$ superconducting three terminal device. The organic copper (II) phthalocyanine (Cu-Pc) layer was used far a polaronic quasiparticle (QP) injector. The injection of polaronic QP from the Cu-Pc interlayer into a superconductor $Bi_2$$Sr_2$$CaCu_2$ $O_{8+}$ $\delta$/(BSCCO) thin film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. The tunneling spectroscopy of an Au/cu-PC/BSCCO junction exhibited a zero bias conductance peak which may be due to Andreev reflection at a Cu-Pc/d-wave superconductor junction.n..

  • PDF

Interface Engineering in Superconducting Ultra-thin Film of Ga (Ga 극초박막의 계면특성과 초전도 물성제어에 대한 연구)

  • Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.212-215
    • /
    • 2010
  • Spin polarized tunneling studies were carried out with Al-Ga bilayer as a spin detector, by Meservey-Tedrow technique. The superconductor (SC)/Insulator (I)/Ferromagnet (FM) tunnel junctions were provided by ultra high vacuum molecular beam epitaxy (UHV-MBE) technique. The analysis of interfacial properties in the Al-Ga bilayer was also carried out by Auger electron spectroscopy. It was observed that the superconducting transition temperature and energy gap were raised in comparison with that of bulk Ga and pure ultrathin Al films. Current studies clearly show how one can modify the material properties at the interface just with a few monolayers.