Superconducting Tunnel Junction Detectors for Mass Spectrometry

  • Ohkubo, M. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Zen, N. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Kitazume, T. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Ukibe, M. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Shiki, S. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Koike, M. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2012.12.17
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

With conventional mass spectrometry (MS), ions are separated according to mass/charge (m/z) ratios. We must speculate the z values to obtain the m values. Superconducting tunnel junction (STJ) detectors can solve this problem, and true mass spectrometry becomes possible instead of m/z spectrometry. The STJ detectors were installed in MS instruments with a variety of ion sources. As an example, we report fragmentation analysis of a non-covalent protein complex of hemoglobin.

Keywords

References

  1. M. Ohkubo, "Current status of non-equilibrium superconducting detectors for photons and molecules," AIP Conf. Proc. 1185, 381-388 (2009)
  2. M. Ohkubo, "Superconducting detectors for particles from atoms to proteins", Physica C, 468, 1987-1991 (2008). https://doi.org/10.1016/j.physc.2008.05.225
  3. D. Twerenbold et al.Detection of single macromolecules using a cryogenic particle detector coupled to a biopolymer mass spectrometer, Appl. Phys. Lett. 68, 3503-3505, (1996). https://doi.org/10.1063/1.115772
  4. M. Frank, S. Labov, G. Westmacott, and W. Benner, "Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry", Mass Spec. Rev. 18, 155-186 (1999). https://doi.org/10.1002/(SICI)1098-2787(1999)18:3/4<155::AID-MAS1>3.0.CO;2-W
  5. M. Ukibe et al., "Soft x-ray detection performance of superconducting tunnel junction arrays with asymmetric tunnel junction layer structure", Jpn. J. Appl. Phys. 51, 010115-1-010115-5 (2012). https://doi.org/10.1143/JJAP.51.010115
  6. M. Ohkubo et al."x-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC", Sci. Rep. 2, 831-1-831-5 (2012).
  7. R. Wenzel, U. Matter, L. Schultheis, and R. Zenobi, "Analysis of Megadalton Ions Using Cryodetection MALDI Time-of-Flight Mass Spectrometry", Anal. Chem. 77, 4329-4337 (2005). https://doi.org/10.1021/ac0482054
  8. http://www.vacf.jp/systems_e.html.
  9. http://unit.aist.go.jp/riif/openi/index.htmlS. Shiki et al., "Infrared-blocking filters for superconductingtunnel- junction particle detector", Jpn. J. Appl. Phys. 47, 3682-3685 (2008). https://doi.org/10.1143/JJAP.47.3682
  10. A. Kushino et al. "Development of superconducting coaxial cables for cryogenic detectors", J. Low Temp. Phys. 151, 650-654 (2008). https://doi.org/10.1007/s10909-008-9721-x
  11. N. Zen et al., "Cryogen-free cryostat for low temperature hundred pixel array detectors", IEEE Trans. Appl. Supercond. 19, 1008-1011 (2009). https://doi.org/10.1109/TASC.2009.2018769
  12. S. Shiki et al., "Kinetic-energy-sensitive mass spectrometry for separation of different ions with the same m/z value", J. Mass Spectrom. 43, 1686-1691 (2008). https://doi.org/10.1002/jms.1459
  13. M. Ohkubo et al., "Direct mass analysis of neutral molecules by superconductivity", Int. J. Mass Spectrom. 299, 94-101 (2011). https://doi.org/10.1016/j.ijms.2010.09.027