Browse > Article

Superconducting Tunnel Junction Detectors for Mass Spectrometry  

Ohkubo, M. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
Zen, N. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
Kitazume, T. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
Ukibe, M. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
Shiki, S. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
Koike, M. (Research Institute of Instrumentation Frontier (RIIF), National Institute of Advanced Industrial Science and Technology (AIST))
Publication Information
Abstract
With conventional mass spectrometry (MS), ions are separated according to mass/charge (m/z) ratios. We must speculate the z values to obtain the m values. Superconducting tunnel junction (STJ) detectors can solve this problem, and true mass spectrometry becomes possible instead of m/z spectrometry. The STJ detectors were installed in MS instruments with a variety of ion sources. As an example, we report fragmentation analysis of a non-covalent protein complex of hemoglobin.
Keywords
superconducting tunnel junctions; Mass spectrometry; analytical instruments; protein complex; hemoglobin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Twerenbold et al.Detection of single macromolecules using a cryogenic particle detector coupled to a biopolymer mass spectrometer, Appl. Phys. Lett. 68, 3503-3505, (1996).   DOI   ScienceOn
2 M. Frank, S. Labov, G. Westmacott, and W. Benner, "Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry", Mass Spec. Rev. 18, 155-186 (1999).   DOI   ScienceOn
3 M. Ukibe et al., "Soft x-ray detection performance of superconducting tunnel junction arrays with asymmetric tunnel junction layer structure", Jpn. J. Appl. Phys. 51, 010115-1-010115-5 (2012).   DOI
4 M. Ohkubo et al."x-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC", Sci. Rep. 2, 831-1-831-5 (2012).
5 R. Wenzel, U. Matter, L. Schultheis, and R. Zenobi, "Analysis of Megadalton Ions Using Cryodetection MALDI Time-of-Flight Mass Spectrometry", Anal. Chem. 77, 4329-4337 (2005).   DOI   ScienceOn
6 http://www.vacf.jp/systems_e.html.
7 http://unit.aist.go.jp/riif/openi/index.htmlS. Shiki et al., "Infrared-blocking filters for superconductingtunnel- junction particle detector", Jpn. J. Appl. Phys. 47, 3682-3685 (2008).   DOI
8 A. Kushino et al. "Development of superconducting coaxial cables for cryogenic detectors", J. Low Temp. Phys. 151, 650-654 (2008).   DOI   ScienceOn
9 N. Zen et al., "Cryogen-free cryostat for low temperature hundred pixel array detectors", IEEE Trans. Appl. Supercond. 19, 1008-1011 (2009).   DOI
10 S. Shiki et al., "Kinetic-energy-sensitive mass spectrometry for separation of different ions with the same m/z value", J. Mass Spectrom. 43, 1686-1691 (2008).   DOI   ScienceOn
11 M. Ohkubo et al., "Direct mass analysis of neutral molecules by superconductivity", Int. J. Mass Spectrom. 299, 94-101 (2011).   DOI   ScienceOn
12 M. Ohkubo, "Current status of non-equilibrium superconducting detectors for photons and molecules," AIP Conf. Proc. 1185, 381-388 (2009)
13 M. Ohkubo, "Superconducting detectors for particles from atoms to proteins", Physica C, 468, 1987-1991 (2008).   DOI   ScienceOn