• 제목/요약/키워드: super-resolution reconstruction

검색결과 60건 처리시간 0.032초

센싱 및 계측 기술에서의 혁신: 지구물리 탐사를 위한 압축센싱 및 초고해상도 기술 (A Breakthrough in Sensing and Measurement Technologies: Compressed Sensing and Super-Resolution for Geophysical Exploration)

  • 공승현;한승준
    • 지구물리와물리탐사
    • /
    • 제14권4호
    • /
    • pp.335-341
    • /
    • 2011
  • 탐사 시스템을 포함하여 대부분의 센싱 및 계측 시스템은 중요한 정보를 놓치지 않기 위하여 필요한 정보 보다 높은 샘플주기로 정보를 수집 한다. 이는 경우에 따라 센싱 및 계측 시스템이 비효율적일 수 있음을 의미한다. 본 논문에서는 적은 샘플자료로부터 높은 정밀도의 정보 취득에 관한 새로운 두 가지 연구분야를 소개하고자 한다. 하나는 가능한 적은 샘플로 원래의 정보를 복원하는 압축센싱(Compressed Sensing)기술이며, 또 다른 하나는 이미 얻어진 한정된 샘플로부터 높은 해상도의 정보를 추정하는 초고해상도(Super-Resolution)기술이다. 본 논문에서는 압축센싱 기술의 기본이론과 복원기술에 대해 설명하고, 탐사분야의 적용 사례, 초고해상도 기술의 배경 및 최근의 기술인 FRI (Finite Rate of Innovation) 개념과 LIMS (Least-squares based Iterative Multipath Super-resolution)기술의 적용사례를 소개한다. 결론으로는 이러한 새로운 기술들이 지구물리 탐사분야에 어떻게 활용될 수 있는지 논의한다.

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

영상 관찰 모델을 이용한 예제기반 초해상도 텍스트 영상 복원 (Example-based Super Resolution Text Image Reconstruction Using Image Observation Model)

  • 박규로;김인중
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.295-302
    • /
    • 2010
  • 예제기반 초해상도 영상 복원(EBSR)은 고해상도 영상과 저해상도 영상간의 패치간 대응관계를 학습함으로써 고해상도 영상을 복원하는 방법으로, 한 장의 저해상도 영상으로부터도 고해상도 영상을 복원할 수 있는 장점이 있다. 그러나, 폰트의 종류나 크기가 학습 영상과 다른 텍스트 영상을 적용할 경우 잡영을 많이 발생시킨다. 그 이유는 복원 과정 중 매칭 단계에서 입력 패치들이 사전 내의 고해상도 패치와 부적절하게 매칭될 수 있기 때문이다. 본 논문에서는 이러한 문제점을 극복하기 위한 새로운 패치 매칭 방법을 제안한다. 제안하는 방법은 영상 관찰 모델을 이용하여 입력 영상과 출력 영상간의 상관 관계를 보존함으로써 잘못 매칭된 패치로 인한 잡영을 효과적으로 억제한다. 이는 출력 영상의 화질을 개선할 뿐 아니라, 다양한 종류 및 크기의 폰트를 포함한 대용량 패치 사전을 적용할 수 있게 함으로써 폰트의 종류 및 크기의 변이에 대한 적응력을 크게 향상시킨다. 실험에서 제안하는 방법은 폰트와 크기가 다양한 영상에 대하여 기존의 방법보다 우수한 영상 복원 성능을 나타내었다. 뿐만 아니라, 인식 성능도 88.58%에서 93.54%로 개선되어 제안하는 방법이 인식 성능의 개선에도 효과적임을 확인하였다.

선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘 (A selective sparse coding based fast super-resolution method for a side-scan sonar image)

  • 박재현;양철종;구본화;이승호;김성일;고한석
    • 한국음향학회지
    • /
    • 제37권1호
    • /
    • pp.12-20
    • /
    • 2018
  • 측면주사 소나 영상 획득의 효율성을 향상시키고자 저해상도의 수중 영상을 복원 기법을 이용하여 고화질 영상으로 개선시키는 연구가 시도되고 있다. 측면주사 소나 영상은 광학 영상과 같은 2차원 신호를 사용한다는 측면에서 기존 광학 영상 복원에 적용된 기법의 응용을 고려할 수 있다. 광학 영상에 대한 가장 대표적인 복원 방법 중 하나는 스파스 코딩이며, 수중 영상의 희소성을 분석하여 스파스 코딩 기법을 수중 영상에 적용할 수 있음을 증명하는 연구가 진행되었다. 스파스 코딩은 입력 신호에 대하여 사전과 스파스 계수의 선형 결합으로 복원 신호를 얻는 방식이다. 하지만 스파스 계수의 값을 정확히 추정하기 위해서는 많은 연산량을 필요로 한다. 본 연구에서는 스파스 코딩 기반의 수중 영상 초해상도 복원을 수행하되, 수중 영상 내 객체 영역에 한해서 선택적으로 복원 기법을 적용하는 방법을 제안함으로써 전체 연산 시간을 단축시킨다. 이를 위하여 수중 영상에서 경계를 검출하고 그 분포에 따라 객체 영역과 비객체 영역을 구분하는 방법을 제안하고, 이를 스파스 코딩 기반의 초해상도 복원 기법과 접목시킨다. 실험을 통해 제안하는 방법이 기존 방식과 동일 수준의 PSNR(Peak Signal-to-Noise Ratio) 수치를 유지하며, 영상 복원에 필요한 시간은 32 % 만큼 단축시킴을 확인함으로써 제안 방법의 유효성을 증명하였다.

Improved Residual Network for Single Image Super Resolution

  • Xu, Yinxiang;Wee, Seungwoo;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.102-105
    • /
    • 2019
  • In the classical single-image super-resolution (SISR) reconstruction method using convolutional neural networks, the extracted features are not fully utilized, and the training time is too long. Aiming at the above problems, we proposed an improved SISR method based on a residual network. Our proposed method uses a feature fusion technology based on improved residual blocks. The advantage of this method is the ability to fully and effectively utilize the features extracted from the shallow layers. In addition, we can see that the feature fusion can adaptively preserve the information from current and previous residual blocks and stabilize the training for deeper network. And we use the global residual learning to make network training easier. The experimental results show that the proposed method gets better performance than classic reconstruction methods.

  • PDF

자가 표본 기반 단일 영상 초해상도 복원을 위한 혼합 놈 패치 유사도 검색 (Mixed-Norm Patch Similarity Search for Self-Example-based Single Image Super-Resolution)

  • 오종근;홍민철
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.491-494
    • /
    • 2018
  • 본 논문은 표본 기반 단일 영상 초해상도 복원 방식의 성능 개선을 위한 혼합 놈을 이용한 패치 유사도 검색 방식에 대해 제안한다. 초해상도 영상 복원 과정에서 패치의 국부 통계 특성을 반영하기 위해 패치 경사도에 따른 놈의 차수를 결정하고, 놈의 차수를 패치간의 유사도 검색을 위한 함수로 사용하는 방식에 대해 제안한다. 실험 결과를 통해 제안하는 유사도 검색 방식은 기존 검색 방식의 성능을 개선할 수 있는 능력이 있음을 확인할 수 있었다.

노출이 다른 다수의 입력 영상을 사용한 초해상도 영상 복원 (Super Resolution Reconstruction from Multiple Exposure Images)

  • 이태형;하호건;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.73-80
    • /
    • 2012
  • 초해상도 영상복원은 동일한 노출을 가진 다수의 저해상도 영상을 사용하며, 각 영상들 간의 부화소 이동량을 통해 높은 해상도를 가지는 영상을 복원하는 방법이다. 최근에는 노출이 다른 다수의 입력 영상들을 사용하여 해상도와 동적범위 모두를 향상시키는 방법들이 제시되고 있다. 기존의 방법들은 장면의 휘도 변환을 위한 카메라 응답곡선과 톤 맵핑 방법을 필수적으로 요구한다. 이러한 과정에서 CRC 곡선은 추가적인 영상 획득을 요구하며, 과정 또한 복잡하다. 특히 톤 맵핑은 방법에 따라 결과 영상의 화질을 일정하게 나타내지 못하는 장점이 있다. 따라서 본 연구에서는 가중치 맵을 사용한 고해상도 동적 범위 확장 영상 재현 방법을 제시한다. 제안된 방법에서 먼저 각 입력 영상에서 인간 시각에 가장 잘 보이는 영역을 가중치 맵(weight map)이라 정의하고, 가중치 맵이 적용된 입력 영상을 초해상도 복원방법에 적용함으로써, 해상도와 동적 범위가 모두 확장된 결과 영상을 획득한다. 이 방법은 카메라 응답곡선과 톤 맵핑을 사용하지 않음으로 일정한 화질을 획득한다. 또한 제안된 방법은 입력 영상의 구성에 따라 결과 영상의 화질이 다르게 나타남으로, 수수의 불규칙한 입력에도 유사한 결과를 획득하기 위한 밝기 보상 요소를 제안한다.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Super-resolution of compressed image by deep residual network

  • Jin, Yan;Park, Bumjun;Jeong, Jechang
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.59-61
    • /
    • 2018
  • Highly compressed images typically not only have low resolution, but are also affected by compression artifacts. Performing image super-resolution (SR) directly on highly compressed image would simultaneously magnify the blocking artifacts. In this paper, a SR method based on deep learning is proposed. The method is an end-to-end trainable deep convolutional neural network which performs SR on compressed images so as to reduce compression artifacts and improve image resolution. The proposed network is divided into compression artifacts removal (CAR) part and SR reconstruction part, and the network is trained by three-step training method to optimize training procedure. Experiments on JPEG compressed images with quality factors of 10, 20, and 30 demonstrate the effectiveness of the proposed method on commonly used test images and image sets.

  • PDF

Lightweight Single Image Super-Resolution Convolution Neural Network in Portable Device

  • Wang, Jin;Wu, Yiming;He, Shiming;Sharma, Pradip Kumar;Yu, Xiaofeng;Alfarraj, Osama;Tolba, Amr
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4065-4083
    • /
    • 2021
  • Super-resolution can improve the clarity of low-resolution (LR) images, which can increase the accuracy of high-level compute vision tasks. Portable devices have low computing power and storage performance. Large-scale neural network super-resolution methods are not suitable for portable devices. In order to save the computational cost and the number of parameters, Lightweight image processing method can improve the processing speed of portable devices. Therefore, we propose the Enhanced Information Multiple Distillation Network (EIMDN) to adapt lower delay and cost. The EIMDN takes feedback mechanism as the framework and obtains low level features through high level features. Further, we replace the feature extraction convolution operation in Information Multiple Distillation Block (IMDB), with Ghost module, and propose the Enhanced Information Multiple Distillation Block (EIMDB) to reduce the amount of calculation and the number of parameters. Finally, coordinate attention (CA) is used at the end of IMDB and EIMDB to enhance the important information extraction from Spaces and channels. Experimental results show that our proposed can achieve convergence faster with fewer parameters and computation, compared with other lightweight super-resolution methods. Under the condition of higher peak signal-to-noise ratio (PSNR) and higher structural similarity (SSIM), the performance of network reconstruction image texture and target contour is significantly improved.