탐사 시스템을 포함하여 대부분의 센싱 및 계측 시스템은 중요한 정보를 놓치지 않기 위하여 필요한 정보 보다 높은 샘플주기로 정보를 수집 한다. 이는 경우에 따라 센싱 및 계측 시스템이 비효율적일 수 있음을 의미한다. 본 논문에서는 적은 샘플자료로부터 높은 정밀도의 정보 취득에 관한 새로운 두 가지 연구분야를 소개하고자 한다. 하나는 가능한 적은 샘플로 원래의 정보를 복원하는 압축센싱(Compressed Sensing)기술이며, 또 다른 하나는 이미 얻어진 한정된 샘플로부터 높은 해상도의 정보를 추정하는 초고해상도(Super-Resolution)기술이다. 본 논문에서는 압축센싱 기술의 기본이론과 복원기술에 대해 설명하고, 탐사분야의 적용 사례, 초고해상도 기술의 배경 및 최근의 기술인 FRI (Finite Rate of Innovation) 개념과 LIMS (Least-squares based Iterative Multipath Super-resolution)기술의 적용사례를 소개한다. 결론으로는 이러한 새로운 기술들이 지구물리 탐사분야에 어떻게 활용될 수 있는지 논의한다.
Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.
예제기반 초해상도 영상 복원(EBSR)은 고해상도 영상과 저해상도 영상간의 패치간 대응관계를 학습함으로써 고해상도 영상을 복원하는 방법으로, 한 장의 저해상도 영상으로부터도 고해상도 영상을 복원할 수 있는 장점이 있다. 그러나, 폰트의 종류나 크기가 학습 영상과 다른 텍스트 영상을 적용할 경우 잡영을 많이 발생시킨다. 그 이유는 복원 과정 중 매칭 단계에서 입력 패치들이 사전 내의 고해상도 패치와 부적절하게 매칭될 수 있기 때문이다. 본 논문에서는 이러한 문제점을 극복하기 위한 새로운 패치 매칭 방법을 제안한다. 제안하는 방법은 영상 관찰 모델을 이용하여 입력 영상과 출력 영상간의 상관 관계를 보존함으로써 잘못 매칭된 패치로 인한 잡영을 효과적으로 억제한다. 이는 출력 영상의 화질을 개선할 뿐 아니라, 다양한 종류 및 크기의 폰트를 포함한 대용량 패치 사전을 적용할 수 있게 함으로써 폰트의 종류 및 크기의 변이에 대한 적응력을 크게 향상시킨다. 실험에서 제안하는 방법은 폰트와 크기가 다양한 영상에 대하여 기존의 방법보다 우수한 영상 복원 성능을 나타내었다. 뿐만 아니라, 인식 성능도 88.58%에서 93.54%로 개선되어 제안하는 방법이 인식 성능의 개선에도 효과적임을 확인하였다.
측면주사 소나 영상 획득의 효율성을 향상시키고자 저해상도의 수중 영상을 복원 기법을 이용하여 고화질 영상으로 개선시키는 연구가 시도되고 있다. 측면주사 소나 영상은 광학 영상과 같은 2차원 신호를 사용한다는 측면에서 기존 광학 영상 복원에 적용된 기법의 응용을 고려할 수 있다. 광학 영상에 대한 가장 대표적인 복원 방법 중 하나는 스파스 코딩이며, 수중 영상의 희소성을 분석하여 스파스 코딩 기법을 수중 영상에 적용할 수 있음을 증명하는 연구가 진행되었다. 스파스 코딩은 입력 신호에 대하여 사전과 스파스 계수의 선형 결합으로 복원 신호를 얻는 방식이다. 하지만 스파스 계수의 값을 정확히 추정하기 위해서는 많은 연산량을 필요로 한다. 본 연구에서는 스파스 코딩 기반의 수중 영상 초해상도 복원을 수행하되, 수중 영상 내 객체 영역에 한해서 선택적으로 복원 기법을 적용하는 방법을 제안함으로써 전체 연산 시간을 단축시킨다. 이를 위하여 수중 영상에서 경계를 검출하고 그 분포에 따라 객체 영역과 비객체 영역을 구분하는 방법을 제안하고, 이를 스파스 코딩 기반의 초해상도 복원 기법과 접목시킨다. 실험을 통해 제안하는 방법이 기존 방식과 동일 수준의 PSNR(Peak Signal-to-Noise Ratio) 수치를 유지하며, 영상 복원에 필요한 시간은 32 % 만큼 단축시킴을 확인함으로써 제안 방법의 유효성을 증명하였다.
In the classical single-image super-resolution (SISR) reconstruction method using convolutional neural networks, the extracted features are not fully utilized, and the training time is too long. Aiming at the above problems, we proposed an improved SISR method based on a residual network. Our proposed method uses a feature fusion technology based on improved residual blocks. The advantage of this method is the ability to fully and effectively utilize the features extracted from the shallow layers. In addition, we can see that the feature fusion can adaptively preserve the information from current and previous residual blocks and stabilize the training for deeper network. And we use the global residual learning to make network training easier. The experimental results show that the proposed method gets better performance than classic reconstruction methods.
본 논문은 표본 기반 단일 영상 초해상도 복원 방식의 성능 개선을 위한 혼합 놈을 이용한 패치 유사도 검색 방식에 대해 제안한다. 초해상도 영상 복원 과정에서 패치의 국부 통계 특성을 반영하기 위해 패치 경사도에 따른 놈의 차수를 결정하고, 놈의 차수를 패치간의 유사도 검색을 위한 함수로 사용하는 방식에 대해 제안한다. 실험 결과를 통해 제안하는 유사도 검색 방식은 기존 검색 방식의 성능을 개선할 수 있는 능력이 있음을 확인할 수 있었다.
초해상도 영상복원은 동일한 노출을 가진 다수의 저해상도 영상을 사용하며, 각 영상들 간의 부화소 이동량을 통해 높은 해상도를 가지는 영상을 복원하는 방법이다. 최근에는 노출이 다른 다수의 입력 영상들을 사용하여 해상도와 동적범위 모두를 향상시키는 방법들이 제시되고 있다. 기존의 방법들은 장면의 휘도 변환을 위한 카메라 응답곡선과 톤 맵핑 방법을 필수적으로 요구한다. 이러한 과정에서 CRC 곡선은 추가적인 영상 획득을 요구하며, 과정 또한 복잡하다. 특히 톤 맵핑은 방법에 따라 결과 영상의 화질을 일정하게 나타내지 못하는 장점이 있다. 따라서 본 연구에서는 가중치 맵을 사용한 고해상도 동적 범위 확장 영상 재현 방법을 제시한다. 제안된 방법에서 먼저 각 입력 영상에서 인간 시각에 가장 잘 보이는 영역을 가중치 맵(weight map)이라 정의하고, 가중치 맵이 적용된 입력 영상을 초해상도 복원방법에 적용함으로써, 해상도와 동적 범위가 모두 확장된 결과 영상을 획득한다. 이 방법은 카메라 응답곡선과 톤 맵핑을 사용하지 않음으로 일정한 화질을 획득한다. 또한 제안된 방법은 입력 영상의 구성에 따라 결과 영상의 화질이 다르게 나타남으로, 수수의 불규칙한 입력에도 유사한 결과를 획득하기 위한 밝기 보상 요소를 제안한다.
Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
Wind and Structures
/
제36권6호
/
pp.405-421
/
2023
Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.
Highly compressed images typically not only have low resolution, but are also affected by compression artifacts. Performing image super-resolution (SR) directly on highly compressed image would simultaneously magnify the blocking artifacts. In this paper, a SR method based on deep learning is proposed. The method is an end-to-end trainable deep convolutional neural network which performs SR on compressed images so as to reduce compression artifacts and improve image resolution. The proposed network is divided into compression artifacts removal (CAR) part and SR reconstruction part, and the network is trained by three-step training method to optimize training procedure. Experiments on JPEG compressed images with quality factors of 10, 20, and 30 demonstrate the effectiveness of the proposed method on commonly used test images and image sets.
Wang, Jin;Wu, Yiming;He, Shiming;Sharma, Pradip Kumar;Yu, Xiaofeng;Alfarraj, Osama;Tolba, Amr
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권11호
/
pp.4065-4083
/
2021
Super-resolution can improve the clarity of low-resolution (LR) images, which can increase the accuracy of high-level compute vision tasks. Portable devices have low computing power and storage performance. Large-scale neural network super-resolution methods are not suitable for portable devices. In order to save the computational cost and the number of parameters, Lightweight image processing method can improve the processing speed of portable devices. Therefore, we propose the Enhanced Information Multiple Distillation Network (EIMDN) to adapt lower delay and cost. The EIMDN takes feedback mechanism as the framework and obtains low level features through high level features. Further, we replace the feature extraction convolution operation in Information Multiple Distillation Block (IMDB), with Ghost module, and propose the Enhanced Information Multiple Distillation Block (EIMDB) to reduce the amount of calculation and the number of parameters. Finally, coordinate attention (CA) is used at the end of IMDB and EIMDB to enhance the important information extraction from Spaces and channels. Experimental results show that our proposed can achieve convergence faster with fewer parameters and computation, compared with other lightweight super-resolution methods. Under the condition of higher peak signal-to-noise ratio (PSNR) and higher structural similarity (SSIM), the performance of network reconstruction image texture and target contour is significantly improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.