• 제목/요약/키워드: super-ionic

검색결과 20건 처리시간 0.01초

스크린 인쇄법을 이용한 NASICON 후막 SO2가스 센서의 제조 및 특성 (Fabrication and Sensing Properties of NASICON Thick Film SO2 Gas Sensor Using Screen-print Method)

  • 배재철;이상태;전희권;방영일;이덕동;허증수
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.115-119
    • /
    • 2003
  • The thick film type sensor having Pt/Na Super Ionic Conductor(NASICON) solid electrolyte/Pt/$Na_2$$SO_4$/Pt catalyst system for $SO_2$gas was fabricated by screen-print method. The phase of Na Super Ionic Conductor solid electrolyte sintered at different temperature of 1050, 1150,$ 1250^{\circ}C$ and for different time of 1.5, 2.5, 3.5 hr were investigated by XRD. The Electromotive Force variation of the sensor with $SO_2$concentrations and operating temperatures were investigated. The major phase of Na Super Ionic Conductor film sintered at 115$0^{\circ}C$ for 3.5 hr was sodium zirconium silicon phosphate($Na_3$Zr$_2$$Si_2$PO$_{12}$). The Nernst's slope of Na Super Ionic Conductor sensor for $SO_2$gas with the variation of concentration from 10 to 100 ppm was 167.14 ㎷/decade at the operating temperature of $500 ^{\circ}C$. The increase of oxygen partial pressure was not affected to the variation of Nernst's slope.e.

Nucleation kinetics and technology design for crystal growth from aqueous solution

  • Kidyarov, B.I.
    • 한국결정성장학회지
    • /
    • 제13권2호
    • /
    • pp.51-55
    • /
    • 2003
  • The interrelation into nucleation and thermodynamic parameters of solutions has been established by plotting of various dependencies: the enthalpy of dissolution, solubility product and super-solubility on ionic salt radii and also the extent of deviation from an ideal Debye -Huckel model of electrolyte solution on solubility product. The possible methods of perfect crystal growth from aqueous solution have been found a priori by separating of known set of pair values of solubility and super-solubility into no less than six-nine characteristic and distinctive sub-sets.

이성분계 전도성물질을 이용한 리튬이온전지의 전기화학적 성능 향상에 관한 연구 (Improvement on Electrochemical Performances of Lithium-Ion Batteries Using Binary Conductive Agents)

  • 이창우;이미숙;김현수;문성인
    • 공업화학
    • /
    • 제16권5호
    • /
    • pp.689-692
    • /
    • 2005
  • 스피넬계 $LiMn_2O_4$를 양극 활물질로 사용하는 리튬이온전지의 전기화학적 성능을 향상시키기 위하여 서로 상이한 입자크기를 가지는 Super P Black 및 $Vulcan^{(R)}$ XC-72R을 사용한 이성분계 전도성물질을 제조하였다. 이렇게 이성분계 전도성물질을 사용하여 제조되어진 $LiMn_2O_4$ 전지 시스템은 충 방전 동안의 비용량 및 사이클 수명의 관점에서 특성 평가되었다. 결과적으로 Super P Black 및 $Vulcan^{(R)}$ XC-72R이 3:7의 비율로 구성되어진 이성분계 전도성물질을 사용하였을 때의 전지가 우수한 전기화학적 성능을 보여주었으며 이는 적절한 조합의 ionic diffusion rate와 electric contact에 의해 제어되어졌기 때문인 것으로 여겨진다.

Near-Infrared Spectra of Super Star Clusters in M82

  • ;;임명신
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.61.2-61.2
    • /
    • 2012
  • We observed selected super cluster regions in M82 with 5'5 arcsec field-of-view using near-IR high resolution echelle spectrometer, IRCS, at the SUBARU 8.2 m telescope. The slit width of 0.15 arcsec makes the high resolution (R ${\approx}$ 20,000) spectra in the H and K bands. In this poster, we present sample spectra of [FeII] lines and ro-vibration lines of $H_2$ which trace ionic shocks in the intercloud regions and molecular shocks. The line widths of $Br{\gamma}$ line are also measured to derive the velocity dispersion within the super star clusters.

  • PDF

NASICON 고체 전해질의 이온 전도도 계산 (III) 전도경로가 Na1$\longrightarrow$mid-Na$\longrightarrow$Na2인경우 (Computation of Ionic Conductivity at NASICON Solid Electrolyte (III) Na1$\longrightarrow$mid-Na$\longrightarrow$Na2 Conduction Paths)

  • 최진삼;서양곤;강은태
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.645-652
    • /
    • 1996
  • The ionic conductivity of NASICON (Na Super Ionic Conductor) solid electrolyte was simulated by using Monte Carlo Method (MCM)based on a hopping model. We assumed that the conduction path of Na ions is Na1→mid-Na→Na2 where the mid-Na sites are shallow potential sites to induce 'a breathing-like movement' of Na ions in the NASICON framework. The minimum of charge correlation factor Fc and the maximum of appeared at nearby x=2.0 The occupancy of mid-Na site affected the depth of potential barrier and the conduc-tivity of the NASICON. At above x=0.3 ln σT vs. 1/T* plots have been shown Arrhenius behavior but in (VWfc)vs. 1/T* have been shown the Arrhenius type tendency at x=1 MCM results accorded with the experi-mental procedure. The role of mid-Na on Na+ ion conduction could be explained by an additional driving force and a breating-like movement model for motions of Na+ ions in the NASICON framework. As we couldn't clearly remarked the model which is the better it seems reasonable to conclude that these hypothesies are suitable to explain the FIC behavior at NASICON.

  • PDF

Hierarchically porous carbon aerogels with high specific surface area prepared from ionic liquids via salt templating method

  • Zhang, Zhen;Feng, Junzong;Jiang, Yonggang;Feng, Jian
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.47-54
    • /
    • 2018
  • High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to $1000^{\circ}C$, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at $900^{\circ}C$, the specific surface area of the resultant carbon aerogels reached $2309m^2g^{-1}$. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.

Modified Carrageenan. 6. Crosslinked Graft Copolymer of Methacrylic Acid and kappa-Carrageenan as a Novel Superabsorbent Hydrogel with Low Salt- and High pH-Sensitivity

  • Pourjavadi A.;Harzandi A. M.;Hosseinzadeh H.
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.483-490
    • /
    • 2005
  • A novel, polysaccharide-based, superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto kappa-carrageenan ($_{k}C$), using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. A proposed mechanism for $_{k}C$­g-polymethacrylic acid ($_{k}C$-g-PMAA) formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The effect of grafting variables, including MBA, MAA, and APS concentration, was systematically optimized to achieve a hydrogel with the maximum possible swelling capacity. The swelling kinetics in distilled water and various salt solutions were preliminarily investigated. Absorbency in aqueous salt solutions of lithium chloride, sodium chloride, potassium chloride, calcium chloride, and aluminum chloride indicated that the swelling capacity decreased with increased ionic strength of the swelling medium. This behavior can be attributed to the charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. The swelling of super absorbing hydrogels was measured in solutions with pH ranging from 1 to 13. In addition, the pH reversibility and on-off switching behavior, at pH levels of 3.0 and 8.0, give the synthesized hydrogels great potential as an excellent candidate for the controlled delivery of bioactive agents.

리튬이온전지용 스피넬계 LiMn2O4 양극에서 상이한 입자크기를 가진 전도성물질이 전기화학적 성능에 미치는 영향 (Effects on Electrochemical Performances of Conductive Agents with Different Particle Size in Spinel LiMn2O4 Cathode for Li-ion Batteries)

  • 이창우;이미숙;김현수;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제18권8호
    • /
    • pp.702-707
    • /
    • 2005
  • Spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conductive agents, and then carried out their comparative investigation for the performances of the $Li/LiMn_2O_4$ cells using different conductive agents with different particle size. In addition, their electrochemical impedance characteristic of $Li/Mn_2O_4$ cells using different conductive agents is effectively identified through a.c. impedance technique. As a consequence, $Li/LiMn_2O_4$ cells with Super P Black show better electrochemical performances ascribed to the significant contribution of feasible ionic conduction due to larger particle size than those with Acetylene Black.

Solid Electrolytes Characteristics Based on Cu-Ge-Se for Analysis of Programmable Metallization Cell

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.227-230
    • /
    • 2008
  • Programmable Metallization Cell (PMC) Random Access Memory is based on the electrochemical growth and removal of electrical nanoscale pathways in thin films of solid electrolytes. In this study, we investigated the nature of thin films formed by the photo doping of copper ions into chalcogenide materials for use in programmable metallization cell devices. These devices rely on metal ions transport in the film so produced to create electrically programmable resistance states. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

Programmable Metallization Cell 제작을 위한 Ag-doped Germanium Selenide의 고체전해질 특성 (The Solid-electrolyte Characteristics of Ag-doped Germanium Selenide for Manufacturing of Programmable Metallization Cell)

  • 남기현;구상모;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.86-87
    • /
    • 2008
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about 1 M$\Omega$ to several hundreds of $\Omega$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF