Modified Carrageenan. 6. Crosslinked Graft Copolymer of Methacrylic Acid and kappa-Carrageenan as a Novel Superabsorbent Hydrogel with Low Salt- and High pH-Sensitivity

  • Pourjavadi A. (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology) ;
  • Harzandi A. M. (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology) ;
  • Hosseinzadeh H. (Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology)
  • 발행 : 2005.12.01

초록

A novel, polysaccharide-based, superabsorbent hydrogel was synthesized through crosslinking graft copolymerization of methacrylic acid (MAA) onto kappa-carrageenan ($_{k}C$), using ammonium persulfate (APS) as a free radical initiator in the presence of methylenebisacrylamide (MBA) as a crosslinker. A proposed mechanism for $_{k}C$­g-polymethacrylic acid ($_{k}C$-g-PMAA) formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy. The effect of grafting variables, including MBA, MAA, and APS concentration, was systematically optimized to achieve a hydrogel with the maximum possible swelling capacity. The swelling kinetics in distilled water and various salt solutions were preliminarily investigated. Absorbency in aqueous salt solutions of lithium chloride, sodium chloride, potassium chloride, calcium chloride, and aluminum chloride indicated that the swelling capacity decreased with increased ionic strength of the swelling medium. This behavior can be attributed to the charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. The swelling of super absorbing hydrogels was measured in solutions with pH ranging from 1 to 13. In addition, the pH reversibility and on-off switching behavior, at pH levels of 3.0 and 8.0, give the synthesized hydrogels great potential as an excellent candidate for the controlled delivery of bioactive agents.

키워드

참고문헌

  1. L. P. Krul, E. I. Narciko, Y. I. Matusevich, L. B. Yakimtsova, V. Matusevich, and W. Seeber, Polym. Bull., 45, 159 (2000) https://doi.org/10.1007/PL00006832
  2. F. A. Dorkoosh, J. Brussee, J. C. Verhoef, G. Borchard, M. Rafeiee-Tehrani, and H. E. Juninger, Polymer, 41, 8213 (2000) https://doi.org/10.1016/S0032-3861(00)00200-7
  3. K. M. Raju, M. P. Raju, and Y. M. Mohan, J. Appl. Polym. Sci., 85, 1795 (2000) https://doi.org/10.1002/app.10731
  4. D. W. Lim, K. J. Yoon, and S. W. Ko, J. Appl. Polym. Sci., 78, 2525 (2000) https://doi.org/10.1002/1097-4628(20001227)78:14<2525::AID-APP130>3.0.CO;2-Q
  5. F. L. Buchholz and A. T. Graham, in Modern Superabsorbent Polymer Technology, Wiley, New York, 1997
  6. L. B. Peppas and R. S. Harland, in Absorbent Polymer Technology, Elsevier, Amsterdam, 1990
  7. R. Po, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 34, 607 (1994) https://doi.org/10.1080/15321799408014168
  8. A. S. Hoffman, in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., CRC Press, Boca Raton, Florida, 1996, Vol. 5, p. 3282
  9. J. Kost, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., Wiley, New York, 1999, Vol. 1, p. 445
  10. N. A. Peppas and A. G. Mikes, in Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, Florida, 1986, Vol. 1
  11. M. Yazdani-Pedram, J. Retuert, and R. Quijada, Macromol. Chem. Phys., 201, 923 (2000) https://doi.org/10.1002/1521-3935(20000601)201:9<923::AID-MACP923>3.0.CO;2-W
  12. Y. Sugahara and O. Takahisa, J. Appl. Polym. Sci., 82, 1437 (2001) https://doi.org/10.1002/app.1816
  13. G. M. Patel and H. C. Trivedi, Eur. Polym. J., 35, 201 (1999) https://doi.org/10.1016/S0014-3057(98)00123-2
  14. S. Silong and L. Rahman, J. Appl. Polym. Sci., 76, 516 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000425)76:4<516::AID-APP9>3.0.CO;2-7
  15. A. K. Bajpai and A. Giri, Carbohydr. Polym., 53, 271 (2003) https://doi.org/10.1016/S0144-8617(03)00071-7
  16. G. F. Fanta, in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., CRC Press, Boca Raton, FL, 1996, Vol.10, pp. 7901, 8051
  17. R. E. Kirk and D. F. Othmer, in Encyclopedia of Chemical Technology, J. I. Kroschwitz and M. Howe-Grant, Eds., John Wiley & Sons, New York, 1992, Vol. 4, p. 942
  18. A. Pourjavadi, A. M. Harzandi, and H. Hosseinzadeh, Eur. Polym. J., 40, 1363 (2004)
  19. A. Pourjavadi, H. Ghasemzadeh, and H. Hosseinzadeh, e- Polymers, 2004, No. 027
  20. H. Hosseinzadeh, A. Pourjavadi, and M. J. Zohouriaan-Mehr, Biomater. Sci. Polym. Eds., 15, 1499 (2004)
  21. H. Hosseinzadeh, A. Pourjavadi, M. J. Zohouriaan-Mehr, and G. R. Mahdavinia, J. Bioact. Compat. Polym., 2004, accepted
  22. A. Pourjavadi, H. Hosseinzadeh, and R. Mazidi, J. Appl. Polym. Sci., 2004, accepted
  23. P. J. Flory, in Principles of Polymer Chemistry, Ithaca, Cornell University Press, New York, 1953
  24. W. F. Lee and G. H. Lin, J. Appl. Polym. Sci., 79, 1665 (2001) https://doi.org/10.1002/1097-4628(20010103)79:1<1::AID-APP10>3.0.CO;2-V
  25. V. D. Athawale and V. Lele, Carbohydr. Polym., 35, 21 (1998) https://doi.org/10.1016/S0144-8617(97)00138-0
  26. V. D. Athawale and V. Lele, Starch/Starke, 50, 426 (1998) https://doi.org/10.1002/(SICI)1521-379X(199810)50:10<426::AID-STAR426>3.0.CO;2-#
  27. G. F. Fanta, in Block and Graft Copolymerization, R. J. Cerasa, Ed., Wiley, London, 1973
  28. J. Chen and Y. Zhao, J. Appl. Polym. Sci., 75, 808 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3
  29. J. Branrup and E. H. Immergut, in Polymer Handbook, 3rd Edn, Wiley, New York, 1989
  30. S. C. Hsu, T. M. Don, and W. Y. Chiu, Polym. Degrad. Stab., 75, 73 (2002) https://doi.org/10.1016/S0141-3910(01)00205-1
  31. R. M. Silverstein and F. X. Webster, in Spectrometric Identification of Organic Compounds, 6th Edn, Wiley, New York, 1998
  32. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 39, 6697 (1998) https://doi.org/10.1016/S0032-3861(98)00095-0
  33. H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 40, 1753 (1999) https://doi.org/10.1016/S0032-3861(98)00394-2
  34. M. Tako, S. Toyama, Z. Q. Qi, and E. Yoza, Food Res. Int., 31, 543 (1998) https://doi.org/10.1016/S0963-9969(99)00022-8
  35. G. Pass, G. O. Philips, and D. J. Wedlock, Macromolecules, 10, 197 (1997) https://doi.org/10.1021/ma60055a039
  36. D. W. Lim, H. S. Whang, and K. J. Yoon, J. Appl. Polym. Sci., 79, 1423 (2001) https://doi.org/10.1002/1097-4628(20010103)79:1<1::AID-APP10>3.0.CO;2-V
  37. R. Barbucci, A. Maganani, and M. Consumi, Macromolecules, 33, 7475 (2000) https://doi.org/10.1021/ma0007029
  38. W. F. Lee and W. Y. Yuan, J. Appl. Polym. Sci., 77, 1760 (2000) https://doi.org/10.1002/1097-4628(20000822)77:8<1760::AID-APP13>3.0.CO;2-J
  39. C. K. Nisha, D. Dhara, and P. R. Chatterji, J.M.S. Pure Appl. Chem., A37, 1447 (2000)
  40. K. Burugapalli, D. Bhatia, V. Koul, and V. Choudhary, J. Appl. Polym. Sci., 82, 217 (2001) https://doi.org/10.1002/app.1816
  41. S. Lu, M. Duan, and S. Lin, J. Appl. Polym. Sci., 8, 1536 (2003)
  42. G. R. Mahdavinia, A. Pourjavadi, and M. J. Zohuriaan-Mehr, Polym. Adv. Technol., 15, 173 (2004) https://doi.org/10.1002/pat.408
  43. A. M. Lowman and N. A. Peppas, in Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Ed., John Wiley & Sons, New York, 1999, p. 139
  44. V. R. Patel and M. M. Amiji, Pharm. Res., 3, 588 (1996)
  45. K. L. Shanta and D. R. K. Harding, Int. J. Pharm., 65, 207 (2000)