• 제목/요약/키워드: super-hydrophobicity

검색결과 21건 처리시간 0.037초

TiO2 나노입자 코팅에 의한 PET섬유의 초발수성에 관한 연구 (A Study on the Super-hydrophobicity of Poly(ethylene terephthalate) Fabric by TiO2 Nano-particles Coating)

  • 박성민;권일준;김지연;김창남;염정현;윤남식
    • 한국염색가공학회지
    • /
    • 제21권1호
    • /
    • pp.30-37
    • /
    • 2009
  • Studies on plants such as lotus leaf suggested that dual-scale structure could contribute to super-hydrophobicity. We introduced super-hydrophobicity onto poly(ethylene terephthalate)(PET) fabric with dual-scale structure by assembling $TiO_2$ nano sol. PET fabric was treated with $TiO_2$ sol, water-repellent agent using various parameters such as particle size, concentration. Morphological changes by particle size were observed using field emmission scanning electron microscopy(FE-SEM) and AFM measurement, contact angle measurement equipment. The contact angle of water was about 138.5$^{\circ}$, 125.8$^{\circ}$, 125.5$^{\circ}$ and 108.9$^{\circ}$ for PET fabric coated with 60.2nm, 120.1nm, 200nm and 410.5nm $TiO_2$ particles, compared with about 111.5$^{\circ}$ for PET fabric coated with water repellent. When we mixed particle sizes of 60.2nm and 120.1nm by 7:3 volume ratio, the contact angle of water was about 132.5$^{\circ}$. And we mixed particle sizes of 60.2nm and 200nm by 7:3 volume ratio, the contact angle of water was about 141.8$^{\circ}$. Also we mixed particle sizes of 60.2nm and 410.5nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated various surface structures to the water-repellent surfaces by using four types of $TiO_2$ nano-particles, and we found that the nanoscale structure was very important for the super-hydrophobicity.

고주파 마그네트론 스퍼터링 방법을 사용하여 Al 기판위에 증착된 PTFE 박막의 초-발수에 관한 특성 연구 (Characteristic Investigation on Super-Hydrophobicity of PTFE Thin Films Deposited on Al Substrates Using RF-Magnetron Sputtering Method)

  • 배강;김화민
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.64-69
    • /
    • 2011
  • Super-hydrophobic properties have been achieved on the rf-sputtered polytetrafluoroethylene(PTFE) films deposited on etched aluminum surfaces. The microstructural evolution created after etching has been investigated by FESEM. The water contact angle over $160^{\circ}$ can be achieved on the rf-sputtered ultra-tihn PTFE film less than 10 nm coated on aluminum surface etched with 7 wt.%, 12.5 wt.%, and 15 wt.% HCl concentration for 12 min. XPS analysis have revealed the presence of a large quantity of $-CF_3$ and $-CF_2$ groups in the rf-sputtered PTFE films that effectively can reduce the surface energy of etched aluminum. The presence of patterned morphology along with the low surface energy at the rf-sputtered PTFE coating makes the aluminum surface with high super-hydrophobic property.

Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation

  • Gao, Jiefeng;Li, Bei;Wang, Ling;Huang, Xuewu;Xue, Huaiguo
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.416-424
    • /
    • 2018
  • Oil spill and oily wastewater have now become a serious threat to the freshwater and marine environments. Porous materials with super-hydrophobicity and super-oleophilicity are good candidates for the oil adsorption and oil/water separation. Here, flexible hybrid nanofibrous membrane (FHNM) containing $SiO_2$/polyvinylidene fluoride (PVDF) microspheres was prepared by simultaneous electrospinning and electrospraying. The obtained FHNM combined the flexibility of the nanofiber mat and super-hydrophobicity of the microspheres, which could not be achieved by either only electrospinning or only electrospraying. It was found that when the weight ratio between the $SiO_2$ and PVDF reached a critical value, the $SiO_2$ nanoparticles were present on the PVDF microsphere surface, significantly improving the surface roughness and hence the contact angle of the FHNM. Compared with the pure electrospun PVDF nanofiber mat, most of the FHNMs have a higher oil adsorption capacity. The FHNM could separate the oil with water quickly under the gravity and displayed a high efficiency and good reusability for the oil/water separation. More importantly, the FHNM could not only separate the oil with the pure water but also the corrosive solution including the salt, acid and alkali solution.

Generation of hydrophobicity on the surfaces of nano and other materials using atmospheric plasmas

  • Kim, Jeong-Won;Cho, Soon-Gook;Ko, Kwang-Cheol;Woo, Hyun-Jong;Chung, Kyu-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.256-256
    • /
    • 2011
  • Using plasmas, hydrophobic surfaces are made on various substances such as polyimide films, filter paper, cotton clothes and multi-walled carbon nanotube (MWCNT) with hexamethyldisiloxane (HMDSO), trimethylchlorosilane (TMCS) and toluene reagents. Plasmas are easily and rapidly to change surface of hydrophilic materials into hydrophobic. We have also optimized processing time and maximized contact angle for super-hydrophobicity of MWCNT. Contact angles have been calculated by measuring between substance and probe liquid, and total surface free energies are determined by the Owens-Wendt equation. Figure 1 shows the measured contact angles with time and ratio of reagents on MWCNT.

  • PDF

폴리프로필렌 섬유용 알킬치환 초소수성 염료의 친화력 분석과 예측을 위한 Molecular Descriptor의 활용 (Application of Molecular Descriptor for Prediction and Analysis of the Affinity between Alkyl Substituted Super Hydrophobic Dyes and Polypropylene Fibers)

  • 장경진;정종석;김태경
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2008년도 제39차 학술발표회
    • /
    • pp.77-78
    • /
    • 2008
  • Affinity between alkyl substituted super hydrophobic dyes and polypropylene fiber has been analyzed by using the molecular descriptor as a method to predict chemical and physical characteristics of compounds. Hydrophobicity of synthesized dyes calculated by LogP which is one of molecular descriptors was increased continuously as the length of alkyl substituents increased.

  • PDF

PFOA Free 불소 고분자 및 실리카 나노졸을 이용한 self cleaning 표면 가공에 관한 연구 (A Study on the Self-cleaning Surface Finishing Using PFOA Free Fluoric Polymer and Silica Nano-sol)

  • 박성민;권일준;김란;염정현;윤남식;이경남
    • 한국염색가공학회지
    • /
    • 제21권6호
    • /
    • pp.1-11
    • /
    • 2009
  • Super-hydrophobic surface, with a water contact angle greater than $150^{\circ}$, has a self cleaning effect termed 'lotus effect'. We introduced super-hydrophobicity onto aramid/rayon mixture fabric with dual-scale structure by assembling silica nano-sol. Mixture fabric was treated with silica nano-sol, fluoric polymer using various parameters such as particle size, concentration. Silica nano-sol size were measured using particle size analyzer. Morphological changes by particle size were observed using field emission scanning electron microscopy(FE-SEM), contact angle measurement equipment. The contact angle of water was about $134.0^{\circ}$, $137.0^{\circ}$, $143.0^{\circ}$, $139.5^{\circ}$ and $139.0^{\circ}$ for mixture fabric coated with 100.2nm, 313.7nm, 558.2nm, 628.5nm and 965.4nm silica nano-sol, compared with about $120.0^{\circ}$ for mixture fabric coated with fluoric polymer. When we mixed particle sizes of 100.2nm and 558.2nm by 7:3 volume ratio, the contact angle of water was about $146.2^{\circ}$. And we mixed particle sizes of 313.7nm and 558.2nm by 7:3 volume ratio, the contact angle of water was about $141.8^{\circ}$. Also we mixed particle sizes of 558.2nm and 965.4nm by 7:3 volume ratio, the best super-hydrophobicity was obtained. In this paper, we fabricated the water-repellent surfaces with various surface structures by using four types of silica nano-sol, and we found that the dual-scale structure was very important for the super-hydrophobicity.

프로판올 첨가에 따른 PVC 용액의 박막 형성과 표면 특성에 미치는 영향 (Effect of the Addition of Propanol to PVC Solution on the Structure of Thin Film and its Surface Property)

  • 박재남;신영식;이원규
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.35-39
    • /
    • 2015
  • 범용성 고분자인 폴리염화비닐(PVC)의 용매에 대한 용해도 차이를 이용하여 미세다공성 구조의 표면을 갖는 초소수성 박막을 제조하고 박막의 형상에 따른 표면 특성을 분석하였다. 용매로 테트라하이드로퓨란과 비용매인 프로판올로 구성된 PVC 용액을 딥코팅으로 물과의 접촉각이 $150^{\circ}$ 이상인 초소수성 PVC 박막을 얻었다. PVC 박막 제조과정의 표면 건조공정에서 온도가 증가는 표면 거칠기를 상대적으로 감소시켜 표면의 소수성 특성 저하를 가져왔다. PVC 용액에 비용매인 프로판올의 양을 증가시키면 코팅 박막의 표면 거칠기가 균일해지고 접촉각을 증가시키는 효과를 보였다. 초소수성의 PVC 박막 표면을 산소 플라즈마 처리하면 노출시간에 따라 친수성으로 표면특성이 변환됨을 확인하였다.

순수 폴리올레핀(PP/UHMWPE) 소재용 초소수성 보라색 염료의 합성 (Synthesis of a Super Hydrophobic Violet Dye for Pure Polyolefin(PP/UHMWPE) Fibers)

  • 김태경;이창환
    • 한국염색가공학회지
    • /
    • 제25권3호
    • /
    • pp.165-171
    • /
    • 2013
  • A new monoazo violet dye optimized for polyolefin fibers such as polypropylene and ultra high molecular weight polyethylene fibers was synthesized and its dyeability was investigated. Two hexyl groups were introduced to coupler, 2,5-dimethoxyaniline, in order to increase hydrophobicity of the dye. The maximum absorption wavelength was appeared at 580nm, which meant that the dye showed violet color. From the dyeing results at various conditions, the optimum dyeing was determined as $130^{\circ}C$ for 1 hour with 5% owf of dyes. The good fastness ratings to washing, rubbing were obtained showing at least 4 for both fibers. Light fastness was acceptable for polypropylene fibers giving ratings 3~4. However, relatively poor light fastness was obtained in case of ultra high molecular weight polyethylene fibers showing ratings 2.

자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구 (Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation)

  • 왕작가;공조엘;장정훈;김명수;박종만
    • Composites Research
    • /
    • 제23권2호
    • /
    • pp.24-30
    • /
    • 2010
  • 니켈-나노분말/에폭시 복합재료의 계면 특성과 소수성을 자체-감지능과 작동기 측정을 위해 평가하였다. 경사형 시편을 사용하여 접촉 저항 및 저항도를 측정하였다. 자기장에서 복합재료의 작동성을 세가지 파형들, 즉, 싸인, 삼각, 그리고 사각파를 사용하여 평가하였다. 균일하지 않은 표면에 존재하는 소수성 영역 때문에 Ni-에폭시 나노복합재료의 어떤 부분은 초소수성보다는 다소 낮은 접촉각인 110도를 가졌다. 동적 접촉각은 정적 접촉각과 경향이 상호 일치함을 보였다. 니켈-나노분말의 고유의 금속성질 때문에 자체 감지를 확인하였으며, 또한 전자기장에 작동 반응을 잘 하였다. 니켈-나노분말/에폭시 복합재료의 최대 및 최적의 성능을 얻기 위해서, 레이져 변위 센서를 사용하여, 파형, 주파수, 그리고 전압의 함수로 작동기의 변위를 평가하였다. 니켈-나노분말/에폭시 복합재료의 작동은 적용된 주파수와 전압의 함수로써 증가하였다. 작동된 복합재료들의 연신율은 전압의 증가에 따라 삼각 혹은 사각파보다 싸인파에서 더욱 빨리 증가하였다.

Coloration of Pure Polypropylene Fiber with Super Hydrophobic Dyes; Application of Anthraquinone Derivatives with linear Alkyl Substituents

  • Kim, Tae-Kyeong;Yoon, Seok-Han;Hong, Jin-Pyo;Kim, Hong-Je;Bae, Jin-Seok
    • 한국염색가공학회지
    • /
    • 제18권5호
    • /
    • pp.30-34
    • /
    • 2006
  • Polypropylene fiber was dyed with 4 super hydrophobic dyes having different alkyl derivatives on the same chromophore. Double-tailed cationic surfactant, didodecyldimethylammonium bromide(DDAB), was used to make dye-dispersant complex to improve the dispersion of dyes. As the alkyl groups are longer and the hydrophobicity is increased, the dyeability onto polypropylene fiber was improved and deep coloration was obtained. As for the fastness properties, wash fastness was relatively good, while light fastness was bit low.