DOI QR코드

DOI QR Code

Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation

  • Gao, Jiefeng (School of Chemistry and Chemical Engineering, Yangzhou University) ;
  • Li, Bei (School of Chemistry and Chemical Engineering, Yangzhou University) ;
  • Wang, Ling (School of Chemistry and Chemical Engineering, Yangzhou University) ;
  • Huang, Xuewu (School of Chemistry and Chemical Engineering, Yangzhou University) ;
  • Xue, Huaiguo (School of Chemistry and Chemical Engineering, Yangzhou University)
  • Received : 2018.04.26
  • Accepted : 2018.09.01
  • Published : 2018.12.25

Abstract

Oil spill and oily wastewater have now become a serious threat to the freshwater and marine environments. Porous materials with super-hydrophobicity and super-oleophilicity are good candidates for the oil adsorption and oil/water separation. Here, flexible hybrid nanofibrous membrane (FHNM) containing $SiO_2$/polyvinylidene fluoride (PVDF) microspheres was prepared by simultaneous electrospinning and electrospraying. The obtained FHNM combined the flexibility of the nanofiber mat and super-hydrophobicity of the microspheres, which could not be achieved by either only electrospinning or only electrospraying. It was found that when the weight ratio between the $SiO_2$ and PVDF reached a critical value, the $SiO_2$ nanoparticles were present on the PVDF microsphere surface, significantly improving the surface roughness and hence the contact angle of the FHNM. Compared with the pure electrospun PVDF nanofiber mat, most of the FHNMs have a higher oil adsorption capacity. The FHNM could separate the oil with water quickly under the gravity and displayed a high efficiency and good reusability for the oil/water separation. More importantly, the FHNM could not only separate the oil with the pure water but also the corrosive solution including the salt, acid and alkali solution.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China

References

  1. J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao, L. Jiang, ACS Appl. Mater. Interfaces 4 (2012) 3207. https://doi.org/10.1021/am300544d
  2. M. Tao, L. Xue, F. Liu, L. Jiang, Adv. Mater. 26 (2014) 2943. https://doi.org/10.1002/adma.201305112
  3. Z. Zhou, X.F. Wu, Mater. Lett. 160 (2015) 423. https://doi.org/10.1016/j.matlet.2015.08.003
  4. Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, J. Mater. Chem. A 2 (2014) 2445. https://doi.org/10.1039/C3TA13397D
  5. Q. Ma, H. Cheng, A.G. Fane, R. Wang, H. Zhang, Small 12 (2016) 2186. https://doi.org/10.1002/smll.201503685
  6. X. Chen, Y.N. Liang, X.Z. Tang, W. Shen, X. Hu, J. Chem. Eng. 308 (2017) 18. https://doi.org/10.1016/j.cej.2016.09.038
  7. Z. Shami, S.M. Amininasab, P. Shakeri, ACS Appl. Mater. Interfaces 8 (2016) 28964. https://doi.org/10.1021/acsami.6b07744
  8. W. Liang, Z. Guo, RSC Adv. 3 (2013) 16469. https://doi.org/10.1039/c3ra42442a
  9. N.T. Cervin, C. Aulin, P.T. Larsson, L. Wagberg, Cellulose 19 (2012) 401. https://doi.org/10.1007/s10570-011-9629-5
  10. R. Arora, K. Balasubramanian, RSC Adv. 4 (2014) 53761. https://doi.org/10.1039/C4RA09245G
  11. D.A. Zha, S. Mei, Z. Wang, H. Li, Z. Shi, Z. Jin, Carbon 49 (2011) 5166. https://doi.org/10.1016/j.carbon.2011.07.032
  12. X. Wang, J. Yu, G. Sun, B. Ding, Mater. Today 19 (2016) 403. https://doi.org/10.1016/j.mattod.2015.11.010
  13. Z. Guo, W. Liu, B.L. Su, J. Colloid Interface Sci. 353 (2011) 335. https://doi.org/10.1016/j.jcis.2010.08.047
  14. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang, Environ. Sci. Technol. 45 (2011) 4527. https://doi.org/10.1021/es2002343
  15. B. Song, Q. Xu, Langmuir 32 (2016) 9960. https://doi.org/10.1021/acs.langmuir.6b02500
  16. M. Obaid, N.A.M. Barakat, O.A. Fadali, M. Motlak, A.A. Almajid, K.A. Khalil, J. Chem. Eng. 259 (2015) 449. https://doi.org/10.1016/j.cej.2014.07.095
  17. C. Luo, J. Wang, J. Peng, Y. Liu, J. An, B. Cao, K. Pan, J. Chem. Eng. 262 (2015) 775. https://doi.org/10.1016/j.cej.2014.09.116
  18. Y. Zhu, D. Wang, L. Jiang, J. Jin, NPG Asia Mater. 6 (2014) 101. https://doi.org/10.1038/am.2014.23
  19. C. Su, Y. Li, Y. Dai, F. Gao, K. Tang, H. Cao, Mater. Lett. 170 (2016) 67. https://doi.org/10.1016/j.matlet.2016.01.133
  20. T. Liu, X. Li, D. Wang, Q. Huang, Z. Liu, N. Li, C. Xiao, Appl. Surf. Sci. 396 (2017) 1443. https://doi.org/10.1016/j.apsusc.2016.11.184
  21. H. Sun, Y. Xu, Y. Zhou, W. Gao, H. Zhao, W. Wang, J. Appl. Polym. Sci. 134 (2016) 44501.
  22. J. Lin, Y. Cai, X. Wang, B. Ding, J. Yu, M. Wang, Nanoscale 3 (2011) 1258. https://doi.org/10.1039/c0nr00812e
  23. Y. Hui, L.Q. Zhu, W.P. Li, H.C. Liu, H.N. Chen, ACS Appl. Mater. Interfaces 9 (2016) 858.
  24. Q. Zhu, Q. Pan, ACS Nano 8 (2014) 1402. https://doi.org/10.1021/nn4052277
  25. M. Obaid, G.M.K. Tolba, M. Motlak, O.A. Fadali, K.A. Khalil, A.A. Almajid, B. Kim, N.A.M. Barakat, J. Chem. Eng. 279 (2015) 631. https://doi.org/10.1016/j.cej.2015.05.028
  26. K.C. Sasakib, M.Z. Tenjimbayashi, K. Manabe, S. Shiratori, ACS Appl. Mater. Interfaces 8 (2016) 651. https://doi.org/10.1021/acsami.5b09782
  27. J.F. Gao, J.S. Wong, M. Hu, W. Li, R.K.Y. Li, Nanoscale 6 (2014) 1056. https://doi.org/10.1039/C3NR05281H
  28. J.F. Gao, W. Li, S.P. Wong, M. Hu, R.K.Y. Li, Polymer 55 (2014) 2913. https://doi.org/10.1016/j.polymer.2014.04.033
  29. L. Jiang, Y. Zhao, J. Zhai, Angew. Chem. 43 (2004) 4338. https://doi.org/10.1002/anie.200460333
  30. Y.P. Jin, K.O. Oh, J.C. Won, H. Han, H.M. Jung, S.K. Yong, J. Mater. Chem. 22 (2012) 16005. https://doi.org/10.1039/c2jm32210b
  31. S.L. Shenoy, W.D. Bates, G. Wnek, Polymer 46 (2005) 8990. https://doi.org/10.1016/j.polymer.2005.06.053
  32. S.L. Shenoy, W.D. Bates, H.L. Frisch, G.E. Wnek, Polymer 46 (2005) 3372. https://doi.org/10.1016/j.polymer.2005.03.011
  33. X.W. Huang, J.F. Gao, W. Li, H.G. Xue, R.K.Y. Li, Y.W. Mai, Mater. Des. 117 (2017) 298. https://doi.org/10.1016/j.matdes.2016.12.096
  34. J.F. Gao, X.W. Huang, H.G. Xue, R.K.Y. Li, J. Chem. Eng. 325 (2017) 443.
  35. J.F. Gao, X.W. Huang, L. Wang, N. Zheng, W. Li, H.G. Xue, R.K.Y. Li, Y.W. Mai, J. Colloid Interface Sci. 506 (2017) 603. https://doi.org/10.1016/j.jcis.2017.07.089
  36. B. Widom, J. Phys. Today 57 (2004) 66.
  37. M. Wang, D. Fang, N. Wang, S. Jiang, J. Nie, Q. Yu, G.P. Ma, Polymer 55 (2014) 2188. https://doi.org/10.1016/j.polymer.2014.02.035
  38. R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, J. Aerosol Sci. 31 (2000) 65. https://doi.org/10.1016/S0021-8502(99)00034-8
  39. S. Wang, Y.P. Li, X.L. Fei, M.D. Sun, C.Q. Zhang, X.Y. Li, Q.B. Yang, X. Hong, J. Colloid Interface Sci. 359 (2011) 380. https://doi.org/10.1016/j.jcis.2011.04.004

Cited by

  1. Experimental Study on the Treatment of Oily Wastewater by Electrocoagulation with Aluminum Electrodes at Different Heights vol.166, pp.16, 2019, https://doi.org/10.1149/2.1391915jes
  2. Electrospun flexible nanofibrous membranes for oil/water separation vol.7, pp.35, 2019, https://doi.org/10.1039/c9ta07296a
  3. Biomimetic preparation of a polycaprolactone membrane with a hierarchical structure as a highly efficient oil-water separator vol.7, pp.42, 2018, https://doi.org/10.1039/c9ta08660a
  4. Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal vol.27, pp.3, 2018, https://doi.org/10.1007/s10965-020-2035-7
  5. Eco-friendly, magnetic-driven, superhydrophobic sponge for oil/water separation and emulsion purification vol.55, pp.15, 2018, https://doi.org/10.1007/s10853-020-04462-4
  6. Highly electrically conductive polymer composite with a novel fiber-based segregated structure vol.55, pp.25, 2018, https://doi.org/10.1007/s10853-020-04797-y
  7. Flexible and Superhydrophobic Composites with Dual Polymer Nanofiber and Carbon Nanofiber Network for High-Performance Chemical Vapor Sensing and Oil/Water Separation vol.12, pp.41, 2018, https://doi.org/10.1021/acsami.0c15110
  8. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation vol.13, pp.1, 2021, https://doi.org/10.1021/acsami.0c18794
  9. A Review on Electrospun PVC Nanofibers: Fabrication, Properties, and Application vol.9, pp.2, 2018, https://doi.org/10.3390/fib9020012
  10. Superelastic Polyimide Nanofiber-Based Aerogels Modified with Silicone Nanofilaments for Ultrafast Oil/Water Separation vol.13, pp.17, 2018, https://doi.org/10.1021/acsami.1c01136
  11. Emulsion dipping based superhydrophobic, temperature tolerant, and multifunctional coatings for smart strain sensing applications vol.216, pp.None, 2021, https://doi.org/10.1016/j.compscitech.2021.109045
  12. Recent Progress on Nanomaterial-Based Membranes for Water Treatment vol.11, pp.12, 2021, https://doi.org/10.3390/membranes11120995
  13. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding vol.98, pp.None, 2018, https://doi.org/10.1016/j.jmst.2021.05.014
  14. Superhydrophobic MXene based fabric composite for high efficiency solar desalination vol.524, pp.None, 2018, https://doi.org/10.1016/j.desal.2021.115475
  15. Fabrication of hydrophilic hierarchical PAN/SiO2 nanofibers by electrospray assisted electrospinning for efficient removal of cationic dyes vol.25, pp.None, 2018, https://doi.org/10.1016/j.eti.2021.102258
  16. Superhydrophobic, electrically conductive and multifunctional polymer foam composite for chemical vapor detection and crude oil cleanup vol.424, pp.no.pd, 2022, https://doi.org/10.1016/j.jhazmat.2021.127697