• Title/Summary/Keyword: sum-rate performance

Search Result 211, Processing Time 0.027 seconds

An analysis of BER performance of LDPC decoder for WiMAX (WiMAX용 LDPC 복호기의 비트오율 성능 분석)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.771-774
    • /
    • 2010
  • In this paper, BER performance of LDPC(Low-Density Parity-Check) decoder for WiMAX is analyzed, and optimal design conditions of LDPC decoder are derived. The min-sum LDPC decoding algorithm which is based on an approximation of LLR sum-product algorithm is modeled and simulated by Matlab, and it is analyzed that the effects of LLR approximation bit-width and maximum iteration cycles on the bit error rate(BER) performance of LDCP decoder. The parity check matrix for IEEE 802.16e standard which has block length of 2304 and code rate of 1/2 is used, and AWGN channel with QPSK modulation is assumed. The simulation results show that optimal BER performance is achieved for 7 iteration cycles and LLR bit-width of (8,6).

  • PDF

Performance Analysis of Amplify-and-Forward Two-Way Relaying with Antenna Correlation

  • Fan, Zhangjun;Xu, Kun;Zhang, Bangning;Pan, Xiaofei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1606-1626
    • /
    • 2012
  • This paper investigates the performance of an amplify-and-forward (AF) two-way relaying system with antenna correlation. The system consists of two multiple-antenna sources, which exchange information via the aid of a single-antenna relay. In particular, we derive the exact outage probability expression. Furthermore, we provide a simple, tight closed-form lower bound for the outage probability. Based on the lower bound, we obtain the closed-form asymptotic outage probability and the average symbol error rate expressions at high signal-to-noise ratio (SNR), which reveal the system's diversity order and coding gain with antenna correlation. To investigate the system's throughput performance with antenna correlation, we also derive a closed-form lower bound for the average sum-rate, which is quite tight from medium to high SNR regime. The analytical results readily enable us to obtain insight into the effect of antenna correlation on the system's performance. Extensive Monte Carlo simulations are conducted to verify the analytical results.

Average Rate Performance of Two-Way Amplify-and-Forward Relaying in Asymmetric Fading Channels

  • Park, Jae-Cheol;Song, Iick-Ho;Lee, Sung-Ro;Kim, Yun-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.250-256
    • /
    • 2011
  • A two-way relaying (TWR) system is analyzed, where two source terminals with unequal numbers of antennas exchange data via an amplify-and-forward relay terminal with a single antenna. In the system considered herein, the link quality between the sources and relay can generally be asymmetric due to the nonidentical antenna configuration, power allocation, and relay location. In such a general setup, accurate bounds on the average sum rate (ASR) are derived when beamforming or orthogonal space time block coding is employed at the sources. We show that the proposed bounds are almost indistinguishable from the exact ASR under various system configurations. It is also observed that the ASR performance of the TWR system with unequal numbers of source antennas is more sensitive to the relay location than to the power allocation.

An analysis of the effects of LLR approximation on LDPC decoder performance (LLR 근사화에 따른 LDPC 디코더의 성능 분석)

  • Na, Yeong-Heon;Jeong, Sang-Hyeok;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.405-409
    • /
    • 2009
  • In this paper, the effects of LLR (Log-Likelihood Ratio) approximation on LDPC (Low-Density Parity-Check) decoder performance are analyzed, and optimal design conditions of LDPC decoder are derived. The min-sum LDPC decoding algorithm which is based on an approximation of LLR sum-product algorithm is modeled and simulated by MATLAB, and it is analyzed that the effects of LLR approximation bit-width and maximum iteration cycles on the bit error rate (BER) performance of LDCP decoder. The parity check matrix for IEEE 802.11n standard which has block length of 1,944 bits and code rate of 1/2 is used, and AWGN channel with QPSK modulation is assumed. The simulation results show that optimal BER performance is achieved for 7 iteration cycles and LLR bit-width of (7,5).

  • PDF

Joint Optimization of User Set Selection and Transmit Power Allocation for Orthogonal Random Beamforming in Multiuser MIMO Systems

  • Kang, Tae-Sung;Seo, Bangwon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.879-884
    • /
    • 2012
  • When the number of users is finite, the performance improvement of the orthogonal random beamforming (ORBF) scheme is limited in high signal-to-noise ratio regions. In this paper, to improve the performance of the ORBF scheme, the user set and transmit power allocation are jointly determined to maximize sum rate under the total transmit power constraint. First, the transmit power allocation problem is expressed as a function of a given user set. Based on this expression, the optimal user set with the maximum sum rate is determined. The suboptimal procedure is also presented to reduce the computational complexity, which separates the user set selection procedure and transmit power allocation procedure.

Performance analysis of large-scale MIMO system for wireless backhaul network

  • Kim, Seokki;Baek, Seungkwon
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.582-591
    • /
    • 2018
  • In this paper, we present a performance analysis of large-scale multi-input multi-output (MIMO) systems for wireless backhaul networks. We focus on fully connected N nodes in a wireless meshed and multi-hop network topology. We also consider a large number of antennas at both the receiver and transmitter. We investigate the transmission schemes to support fully connected N nodes for half-duplex and full-duplex transmission, analyze the achievable ergodic sum rate among N nodes, and propose a closed-form expression of the achievable ergodic sum rate for each scheme. Furthermore, we present numerical evaluation results and compare the resuts with closed-form expressions.

User Selection Algorithms for MU-MIMO Systems with Coordinated Beamforming

  • Maciel-Barboza, Fermin Marcelo;Soriano-Equigua, Leonel;Sanchez-Garcia, Jaime;Castillo-Soria, Francisco Ruben;Topete, Victor Hugo Castillo
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • In this paper, we propose two novel user selection algorithms for multiuser multiple-input and multiple-output downlink wireless systems, in which both a base station (BS) and mobile stations (MSs) are equipped with multiple antennas. Linear transmit beamforming at the BS and receive combining at the MSs are used to avoid interference between users and find a better sum-rate capacity performance. An optimal technique for selecting users would entail an exhaustive search, which in practice becomes computationally complex for a realistic number of users. Suboptimal algorithms with low complexity are proposed for a coordinated beamforming scheme. Simulation results show that the performance of the proposed algorithms is better than that provided by previous algorithms and is very close to an optimal approach with reduced complexity.

An Error Correcting High Rate DC-Free Multimode Code Design for Optical Storage Systems (광기록 시스템을 위한 오류 정정 능력과 높은 부호율을 가지는 DC-free 다중모드 부호 설계)

  • Lee, June;Woo, Choong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.226-231
    • /
    • 2010
  • This paper proposes a new coding technique for constructing error correcting high rate DC-free multimode code using a generator matrix generated from a sparse parity-check matrix. The scheme exploits high rate generator matrixes for producing distinct candidate codewords. The decoding complexity depends on whether the syndrome of the received codeword is zero or not. If the syndrome is zero, the decoding is simply performed by expurgating the redundant bits of the received codeword. Otherwise, the decoding is performed by a sum-product algorithm. The performance of the proposed scheme can achieve a reasonable DC-suppression and a low bit error rate.

Sum Transmission Rate Maximization Based Cooperative Spectrum Sharing with Both Primary and Secondary QoS-Guarantee

  • Lu, Weidang;Zhu, Yufei;Wang, Mengyun;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2015-2028
    • /
    • 2016
  • In this paper, we propose a sum transmission rate maximization based cooperative spectrum sharing protocol with quality-of-service (QoS) support for both of the primary and secondary systems, which exploits the situation when the primary system experiences a weak channel. The secondary transmitter STb which provides the best performance for the primary and secondary systems is selected to forward the primary signal. Specifically, STb helps the primary system achieve the target rate by using a fraction of its power to forward the primary signal. As a reward, it can gain spectrum access by using the remaining power to transmit its own signal. We study the secondary user selection and optimal power allocation such that the sum transmission rate of primary and secondary systems is maximized, while the QoS of both primary and secondary systems can be guaranteed. Simulation results demonstrate the efficiency of the proposed spectrum sharing protocol and its benefit to both primary and secondary systems.

Superposition Coding in SUS MU-MIMO system for user fairness (사용자 공정성을 위한 MU-MIMO 시스템에서 반직교 사용자 선택 알고리즘에 중첩 코딩 적용 연구)

  • Jang, Hwan Soo;Kim, Kyung Hoon;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2014
  • Nowadays, various researches fulfill in many communication engineering area for B4G (Beyond Forth Generation). Next LTE-A (Long Term Evolution Advanced), MU-MIMO (Multi-User Multi Input Multi Output) method raises to upgrade throughput performance. However, the method of user selection is not decided because of many types and discussions in MU-MIMO system. Many existing methods are powerful for enhancing performance but have various restrictions in practical implementation. Fairness problem is primary restriction in this area. Existing papers emphasis algorithm to increase sum-rate but we introduce an algorithm about dealing with fairness problem for real commercialization implementation. Therefore, this paper introduces new user selection method in MU-MIMO system. This method overcomes a fairness problem in SUS (Semiorthogonal User Selection) algorithm. We can use the method to get a similar sum-rate with SUS and a high fairness performance. And this paper uses a hybrid method with SC-SUS (Superposition Coding SUS) algorithm and SUS algorithm. We find a threshold value of optimal performance by experimental method. We show this performance by computer simulation with MATLAB and analysis that results. And we compare the results with another paper's that different way to solve fairness problem.