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Average Rate Performance of
Two-Way Amplify-and-Forward Relaying in
Asymmetric Fading Channels

Jae Cheol Park, Iickho Song, Sung Ro Lee, and Yun Hee Kim

Abstract: A two-way relaying (TWR) system is analyzed, where
two source terminals with unequal numbers of antennas exchange
data via an amplify-and-forward relay terminal with a single an-
tenna. In the system considered herein, the link guality between
the sources and relay can generally be asymmetrie due to the non-
identical antenna configuration, power allocation, and relay loca-
tion. In such a general setup, accurate bounds on the average sum
rate (ASR) are derived when beamforming or orthogonal space
time block coding is employed at the sources. We show that the
proposed bounds are almost indistinguishable from the exact ASR
under various system configarations. It is also observed that the
ASR performance of the TWR system with unequal numbers of
source antennas is more sensitive to the relay location than to the
power allocation.

Index Terms: Amplify-and-forward (AF), average sum rate {ASR),
beamforming, Nakagami fading, two-way relaying (TWR).

I. INTRODUCTION

Relays have found many applications in wireless networks for
reliable communication and coverage enhancement by acting as
distributed antennas [1], [2]. However, one-way relaying (OWR)
suffers from a loss in the spectral efficiency due to the half-
duplex constraint. This loss can be compensated by employing
two-way relaying (TWR) protocols proposed recently [3]-{11],
where two source terminals communicating each other transmit
their symbols to a relay simultaneously in the first phase and
then the relay broadcasts the received signal back to the two
sources in the second phase. In broadcasting, the relay com-
monly adopts either a decode-and-forward (DF) approach in
which the received signal from the two sources is decoded and
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re-encoded [3]-[5], or an amplify-and-forward (AF) approach
in which the received signal is amplified {5]-{11].

In this paper, we concentrate our attention on simple AF
relays equipped with a single antenna. We refer an AF relay
considered herein simple in that the relay just scales the re-
ceived signal without knowing the transmission strategies of the
sources and the channel state information (CSI) between the
sources and relay. More complicated multi-antenna relays can
be found in the literature [9], {11], where the relays transform
the received signal with the matrix derived from the estimated
CSI. The source terminals are, on the other hand, equipped with
multiple antennas for transmission via either beamforming (BF)
[12] or orthogonal space time block coding (OSTBC) [13], [14]
and for reception via maximal ratio combining (MRC). Taking
the coexistence of heterogeneous terminals into consideration,
we assume that the numbers of antennas at the sources may be
unequal.

Under such a configuration called the asymmetric channels,’
we derive in this paper accurate bounds on the average sum rate
(ASR) of the TWR system. Clearly, upper- and lower-bounds
are provided on the ASR of TWR in [7] when the two channels
from the two sources to the relay have an identical diversity or-
der of one or two. However, the bounds in [7] are unfortunately
observed to be rather loose, deviating from the exact values con-
siderably as the SNR decreases or the relay power increases. In
this paper, we provide more accurate upper- and lower-bounds
on the ASR of TWR, which are in addition applicable in more
general configurations of the TWR system.

The remaining of this paper is organized as follows. Section II
describes the system model of the TWR system in the asymmet-
ric channels. Section III derives new bounds on the ASR, which
are then verified with simulation results and also used for per-
formance investigation in Section IV. Finally, conclusions are
provided in Section V.

Notations: We use bold lowercase (uppercase) letters for the
vectors (matrices) with (-)*, (-)7, and (-)¥ denoting the con-
jugate, transpose, and Hermitian of a vector (matrix), respec-
tively. The space of n x m matrices with complex-valued ele-
ments is denoted by C"*™. We also denote by 0, I, and || - |]
the all-zero vector, n X n identity matrix, and Euclidean norm,
respectively. We use CA/(m, X) to denote the distribution of
a circularly symmetric complex Gaussian random vector with
mean vector m and covariance matrix 3. The notation G(«, )
signifies a gamma distribution of which the probability density
function (pdf) is given by

INot only the values of the signal-to-noise ratio (SNR) but also the diversity
orders of the two channels from the sources to the rely are unequal.
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Fig. 1. System model of a TWR system.
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where I'(a) = [ t* 'e~'dt is the gamma function. We also

use £{-} for the expected value and ~ for “distributed as.”

II. SYSTEM MODEL

Consider a two-hop half-duplex TWR system as shown in
Fig. 1, which consists of two source terminals 77 and 75 and
a relay terminal R located at the distance d;r from T; for
i = 1, 2. The sources 74 and T3 are equipped with My and M,
antennas, respectively, while the relay is equipped with a single
antenna. The system utilizes two orthogonal equi-duration time
slots for a two-phase signal transmission: In the first phase, both
T1 and 75 transmit their symbols simultaneously to the relay R,
and in the second phase, the relay broadcasts the received signal
back to 77 and 75 after amplification. Multiple antennas at the
sources are exploited for either BF or OSTBC transmission and
for MRC reception.

Assuming that the channels are fiat-fading, reciprocal, and
time-invariant over the two time slots, the channels from 7T to R
and from R to T} can be denoted as hiT =[hi1hig - hin,] €
C'XM: and h;, respectively, for i = 1 and 2. The chan-
nels are assumed to be Nakagami fading such that |h; x|> ~

dir

g (mi, #d,;) , where m;, d; = T , and v denote the Nak-
agami fading parameter, normalized distance, and path-loss ex-

ponent, respectively, of the link between 7; and R. Note that,
for m; = 1, Nakagami fading reduces to Rayleigh fading.

A. Beamforming

In this subsection, we assume that the CSI on h; is available
at T; before transmission. Using the CSI, source 7; transmits
its symbols with the BF vector w; = hY /{|h,|| in the first time
slot. The received signal at the relay is then expressed as

yr(l) = |z (1) + [Tha)lz2 (D) + wr(l) 2)

forl =1,2,---, L, where z;(l) ~ CN(0, P,) is the information
symbol of T; with transmit power P; at symbol index [, wr(l) ~
CN(0,0%) is the additive white Gaussian noise (AWGN) at R
at symbol index /, and L denotes the number of symbols in a
time slot. The AF relay amplifies yz (1) by

= Ir 3)
IBE = A P2 + Pl ? + 0%,
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to make the average transmit power Pg, and broadcasts
geryr (1) to Ty and T5 in the second time slot.

The received signal vector y;(I) € CMi*! at T} is thus ex-
pressed as

y;(1) = gerhy||hy[lz1 (1) + gsrhy|hal[z2(1)
+gprhjwgr(l) + w;(l) 4)

for j = 1,2, where w;(1) ~ CN'(0,031p,) is the AWGN vec-
tor at Tj. Over the vector y;(l), T; performs MRC and then
cancels the self-interference in the MRC output as

hT»yll
;1) == j()—ngllha‘ll%j(Z)
Iyl

= gur|hy||[hsllz: () + gprilbyl|wr () + ;1) (5)

hiw; (1) 5 o
e~ CN(0,0%) and (i,j) € D =

{(1,2),(2,1)} denotes the pair of transmitting and receiving ter-
minals.

From (5), the rate (mutual information) delivered from 7 to
T} is obtained as

g _ 1 gBFPHh” |Iby 12

where w;(l) =

Zrlhj|[2o% + o7
1 XirXRj >
=—lo 14 6
2 g2< XiR+(1+77j)XRj+1 ©)
for (’L,]) € D, where X;r = :—é||h¢”2, XRj = i—?“hjilz,
P o}

n; = =+ 5=, and the factor 1/2 stems from the use of two time
o% Pr

slots in the TWR. Hence, the total sum rate of TWR employing
the BF can be expressed as

12 251
Rer, = RBFZ + R,

XirXRj )
log <1 + )]
(%D 2 Xip+(1+n)Xp; +1

In passing, we would like to note that the OWR, which re-
quires four time slots for information exchange through sepa-
rate source transmission and subsequent relaying, can provide
the rate

XirXrj
jt 1+ ——"7>—. 8
Z Og2< +XiR+XRj+1> ®)

(1,7)€D

Rer, =

B. Orthogonal Space Time Block Coding

Let us now assume that the sources transmit informa-
tion symbols via OSTBC with no CSI available. In such a
case, source 7; maps an information symbol vector x; =
[2:(1) 24(2) - z:(K;)]T € CK>? to the OSTBC symbol ma-
trix B;(x;) € CM:*Ni such that B (x;)Bi(x;) = ||xi]|*Ias,.
For instance, the OSTBC symbol matrix for M; = 2 is given by
[13]

Bix) =[5 ) ©
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with K; = 2 and N; = 2: The OSTBC symbol matrices for
M; > 2 can be found in [14]. The OSTBC exhibits no rate loss
with p; = 1 when M; = 2 but exhibits an unavoidable rate
loss with p; = K;/N; < 1 when M; > 2. Then, the OSTBC
symbol matrix B;(x;) is transmitted column by column over the
M; antennas in order.

For simplicity in description, let us consider the first OSTBC
symbol matrices transmitted by the sources. The received sym-
bol at the relay in the first time slot can be represented as

yr(l) = ,/R%h?{bl(z) +yf M%hng(l) +wr(l)  (10)

where b;([) is the /th column of B;(x;) transmitted at the /th
OSTBC symbol time and +/1/M; is the scaling factor to make
the transmit power per information symbol the same as that
without OSTBC. The relay subsequently scales yg(l) by

g Fr
gsT = 3
b+ F hallP + o

an

and broadcasts gstyr(l) to T} and T3 in the second time slot.
The received signal vector at T); in the second time slot is then
given by

¥3(l) = ZoEhiibi0) + rEhibiby(0)

+gsthjwr(l) + w;(1). (12)

After MRC and self-interference cancellation, the signal at T}
can be expressed as

hly, o
AU LI W S0

b0~ /a1,
N %**hjllh?bdl) + gstlbyllwa(l) + @;(1). (13)

By processing {;({)}i=1,2,...,n, linearly with the CSI h;, we
finally have the decision metrics [14]
v5 = S Il bl + gslihy | Vew + W,

Vi = UL

for x;, where Wg ~ CN(0, 0%k, ) and W; ~ CA(0,0%1,).
This process indicates that, for coherent demodulation, the
source T} should estimate h; and h; in the case of OSTBC:
Note that T should estimate h; and {}h;|| for # j in the case
of BE.
On the analogy of the case of BF, the rate delivered from T}

to T; via TWR employing the OSTBC can be obtained as

(14)

i Pi w5 XirXg;
R = Llog, [ 1+ M 15
STa = 3 82 wXin+ (1+ ) Xg; +1 (13)

from (14), where the factor p; incorporates the rate loss of QOS-
TBC. Hence, the sum rate of TWR with the OSTBC is given
by

RST2 = Ré?zz + R%?zl

1y .
a5 XirXR;

1Zplg(1+ )(16)
2 e wXir + (1 + %) XR; +1
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Note that the sum rate of OWR employing OSTBC is given by

1
2, XiRXRj

1
Rst, =~ Z pilog, (1 + 4 ) . an
4 (D mXiR +Xg;+1

II1. UNIFIED ANALYSIS ON THE ASR
A. Bounds on the Sum Rate
Noting the inequality
a: XirXR;
a; Xip +b;Xgr; +b;

0; X;p XR;
T @i Xsp+b; Xy +1
< a; XipXp; +b; — 1
T 0 Xsr+b;XRp; + 1

(18)

fora; > 0,b; > 1, and (i, j) € D, where the equalities hold
when b; = 1, we define the lower-bound function

Loy PN ai XirX R,

= log,(1 + bj‘laiXiR) + logy (1 + Xg;)

—logy(1 +b; 'a:Xir + Xrj) (19)
and upper-bound function
i XirXRr; +b; —1
2190 o b 21 GiAiRAR; T Uy
f (X2R7XR]7al7b]> 089 <1+ azXzR+beRJ +1
=logy(b;) + logy, (1 + bj"laiXiR) + logy (1 + Xgj)
—logy (1 + a; Xir + b; XRj). 20)

With the lower- and upper-bound functions defined above, the
bounds on Rpr, and Rgr, can be expressed as

1
Rbp, =5 D f'(Xirn, Xgj,1,1+m) @1)
(¢,5)€D
and
y 1 ” 1 7
Rér, =5 D pif"(Xim Xmjy 31491 ), @2
(i,j)ED ¢ J

from (7) and (16), respectively: Here, the lower- and upper-
bounds are obtained with y = £ and y = U, respectively.
It should be noted that the exact sum rates (8) and (17) of
OWR are given by Rar, = %’R%’F?[ and Rgr, =

1pU
2R8T2 |771 =TNz=

m=1n2=0
- respectively.

B. Average Sum Rate

To obtain the bounds on the ASR of TWR, we need to derive
E{f¥(Xir, XRrj,ai,b;)} fory = L and U, where a; > 0 and
b; > 1, which in turn requires the derivation of £{log,(1 +
c1Xir + ¢c2XRgj;)} for nonnegative ¢; and cy. The following
observations are necessary in deriving £{log,(1 + c1X;g +
c2Xrj)}-

Theorem 1: When {X;, ~ G(ag,8)} are independent,
Xk ~ GO ag,B) and ¢Xi ~ G(ag,cB) for a constant
c > 0[15].
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Theorem 2: When X; ~ G(aq, 81) and Xa ~ G(og, B2)
are independent, the distribution K(ee1, a2, 51, B2) of X1 + Xo
has the pdf [16]

Bo
p’C(al,amﬂlvﬁ?}(z) = ( . Z O

zcx1+0¢2+k 16—2:/,8Dl

z2>0

. « 230 (23
BT (g + o 4 F) @9

for oy, ; > 0, where 01 = argminf;, oo = arg max;, and
7 1

o = (24)

When «; and a9 are integers, the pdf (23) can be expressed
in finite sums as [17]

2 o.w-ag-{-rb, X zr—].e-z/ﬁj
7,7 ”
PE (o 02,51,82) & o ‘
Oy, 02,0 z ]21; ],61(;2 (7, . ].)‘
(25)

for z > 0, where

oy —r
b]‘J = lim 0%

1
=g {(Oéj — )l ot

1 2 1
(el § (Sl
5 e gJ}
(26)

Corollary 1: For ¢ = 1 and 2, Xig ~ g(m,m) and
Xpi ~ G, vri), where p; = m; M;, v, =

e PR
VR = SEmiy

Proof: Note that X;5 = i

THMy d" ’ and

2and Xp; =
%Zi || |?, where || ~ g(ml, mdv) From Theo-

rem 1, we have S = Y2 |hy )2 (mgth', ﬁ) and
consequently, X, = I¢ S g (m, i) m) and Xp; =

[+
Corollarv 2: When ¢; > 0 and ¢o > 0, we have ¢ X5 +
coXpgj ~ K(pis Hijs C1%ir ,027Ry)~
Pl"OOf:’ Since XiR ~ g(uig‘;‘i}g) and XRj ~ g(uj,'mj),
the result is straightforward from Theorem 2. m|
Let us now define the average capacity function over G(«¢, 3)
and Ko, ag, 81, B2) as

L85 ~ G (mi M, “ﬁ‘vf‘d—)

Cgap) = /0 logy (1 + 2)pg(a,p)(x)d 7

and
>0
C’C(O{},a27ﬂ1,,@2) % /0 1OgQ(l + Z>p’§:((¥1,a2,,61,,32)(z)dz? (28)

respectively. Using (23), we can rewrite C‘;C(m’az’ 81,82) @

_ Bor \ %2
C)C(oq,az,ﬁl,ﬁz) = (5 Z {)kCQ(a1+az+k Boy ) (29)
02

k=0

When o and ez are integers, the result (29) can be expressed
as

,8T< 1)a1+a2+r
0416(12

D) Pl

j=1lr=1

C’C(alvazﬁl 1B2) bJ»TCQ(?":ﬁg)’ (30
using (25). Similarly, when « is an integer, Cg (4 g) is given in
a closed form as [18]

(31

- el/8 2 .
Cotap) = 15 D BTN (—a+1,1/8)
I=1

where I'(a, 2} = f;o t>~Le~tdt is the incomplete Gamma func-
tion. In passing, let us note that (30) and (31) reduce to

~ {51(79(1,51)52Cg<1,ﬂ2>

i , Ba,
Ckipp) =8 ~ % DA By )

Cg(2,8) B1 = P,

and

Co1,8) = (33)

VB (1
Sl (LY,
In2 B
respectively, when «; = oo = a = 1 (which represents the
scenario of single source antenna with Rayleigh fading), where

x)=— [ et;tdt.

From (19), (20), {27), and (28) with Corollaries 1 and 2, we
have

E{f*(Xir, Xrj, a,b;)} = C’g(u“

az’YzR)

+C5(u5,vmy) — CIC(WM,b;lam;m«aj) (34)
and
E{fU(Xig, Xprj,ai,b;)} = logy bj + C‘g(ui,bglaim)
05015 7m) ~ Oy aivim vy 35)

Hence, the bounds on the ASR of TWR are obtained with
a; = 1l and b; = 1 + n; in (34) and (35) for the BF case as

2
1
5{72}31’2} D) Z G (1 yRi)

1 - -
"”2“ Z {Cg(ui,(um)”‘mﬁ) - CIC(M,ALJ,(HTL,)“]“/m,ﬂmj)} (36)
(,j)€D

and
2 _
S{RBFz} = % ; {Cg(ui”mz) + IOgZ(l + 771')}
+% b {ég(ui,(ljtm)*lvm) - C'K(ui,u;,m,(1+mh‘ﬂj)}' 37
(i,7)€D

Similarly, the ASR of TWR employing the OSTBC is ob-
tained with a; = 7\~]4— and b; =1+ X’% in (34) and (35) as

2
1 _
S{RSTQ} = 9 E :picg(ui,’ma)
i=1

1 _
+§ Z Pi {Cg{ui»(Mi+fb!g?7j/Mj)“1'Y@R)
(1,7)€D

_CK(ﬂvi»ﬂj7(Mi+Min/Mj)“1%Rfmj)} (3%)
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Fig. 2. The ASR of TWR as a function of the normalized relay location
diwhen M; =1, My =1, =0.618, and x = 0.5.

and

2
! E o i
g{RZé{T?«} = 9 pi {Cg(uiﬂm) + log, (1 + ﬁ)}

d== 2

1 _
+§ Z pi {Cg(ﬂiv(Mi“’Minj/Mj)—l'YiR)
(4,J)€D

‘meM;‘lwm,<1+m/M,~>m>} . (39

In passing, we would like to add that the exact ASR of OWR
can easily be obtained by E{Rur,} = 3 E{R%y,}|
and S{RSTl} == % S{Rlé{vrz

1 =12==0"

Hm:nz*—-O‘

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we verify the validity of the bounds ob-
tained in this paper and investigate the performance of TWR
in various configurations. We assume a relay power constraint
P = (Pr and source power constraints P, = x(1 — ¢)Pr and
Py = (1-x)(1—¢)Pr, where Pr is the total transmit power of
the system, ¢ € (0, 1) denotes the fraction of the total transmit
power allocated to the relay R, and x € (0, 1) denotes the frac-
tion of the source transmit power (1 — {) Pr allocated to T}. Itis
also assumed that the path loss exponent is ¥ = 3 and the Nak-
agami fading parameters are m; = mgy = 1: The bounds with
the shape parameter u; = m; M, of gamma distribution will be
verified by varying A4; with m; fixed.

Figs. 2 and 3 compare the bounds derived in this paper on the
ASR of TWR with the conventional bounds [7] and simulation
results when My = M = 1 and x = 1/2. The ASR is shown
as a function of the normalized relay location d; in Fig. 2 when
the relay power allocation is { = 0.618 (asserted to be optimal
in [7]) and as a function of the relay power allocation ¢ in Fig. 3
when d; = 1/2. It is observed that the new upper-bound (UB)
and lower-bound (LB) are barely distinguishable from the sim-
ulation results for various values of d; and €. On the other hand,
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Fig. 3. The ASR of TWR as a function of the relay power allocation ¢
when M; =1, Mg =1,d; = 0.5, and x = 0.5.

(M), M3)= (4,1)

%* .
7H A (MM = EM; Symbos: Simul.
+ (M, Mz)= (3,1 e
o (MuMg)=2.1) Lines: F\iewLB
gH © WMyuMy=0,1) .
TWR BF
- = ~TWR QSTBC
- — OWR BF

E{R} {bps/Hz )

Fig. 4. The ASR of TWR employing the BF and OSTBC as a function
of the normalized relay location d; when ¢ = 0.5, x = 0.5, and
Prjo 2 =15 dB.

the conventional bounds deviate considerably from the simula-
tion results: in addition, the upper-bound becomes invalid espe-
cially when the relay approaches Ty or 73 and Pr/o? is small. It
is also observed in Fig. 3 that the optimal relay power allocation
achieved is not at ( = 0.618 but at around ¢ = 0.5.

Fig. 4 provides the ASR of TWR with the BF and OSTBC as
a function of the normalized relay location d; when ¢ = (.5,
x = 0.5, and Pr/c? = 15 dB. We provide both the new lower-
bound and simulation results for several antenna configurations
(M, M5), where the codes of rate 1 [13] and rate 3/4 [14] are
employed for the OSTBC when M, or M3 is 2 and 4, respec-
tively. For comparison, we have also included the ASR of OWR
employing the BF. As we could anticipate easily, the BF exploit-
ing the CSI provides a rate gain over the OSTBC without CSI. It
is observed that the maximum ASR is achieved when the relay
is located closer to the source T when My > Ms: For exam-
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Fig. 5. The ASR of TWR employing the BF as a function of source power
allocation x in the asymmetric channels: (a) At d; = 0.5, (b) at the
optimal d; = d7.

0.8
0.6
o
0.4
0.2
E{R}max =3.97 bps/Hz E{R}max =4.84 bps/Hz
02 04 06 08 02 04 06 08
(a) b)
0.8 0.8
06| % 0.6 %
I
04] . 0.4
0.2 0.2
E{RYmax =5.37 bps/Hz E{R}max =5.75 bps/Hz

02 04 06 08 02 04 06 038
X X

(c) (d)

Fig. 8. The region of (x, ¢) providing the ASR within 1%, 5%, and 10%
loss of the maximum ASR: (a) (M1, M2) = (1,1), {b) (M1, M>2) =
(2,1), (¢) (M1, M2} = (3,1), (d) (M1, M2} = (4,1).

ple, with d; = 0.76 when (M7, M3) = (4,1). As M; increases
with M, fixed, the ASR of BF increases for all d; while the
ASR of OSTBC does not always increase due to the rate loss
when M, = 3 or 4. It is also observed that the ASR of TWR is
about twice that of OWR.

Fig. 5 provides the ASR of TWR employing the BF with sev-
eral degrees of channel asymmetry as a function of the source
power allocation x when {( = 0.5 and My = 1. The relay is
assumed to be located at the center d; = 0.5 in Fig. 5(a) and,
in Fig. 5(b), at the location d; = d} maximizing the ASR in
Fig. 4. As M increases from 1 to 4, the optimal source allo-
cation x* shifts from 0.5 to 0.26 allocating more power to 15
when d; = 0.5 in Fig. 5(a) while it shifts from 0.5 to 0.75 to
11 when d; = d7 in Fig. 5(b). Nonetheless, the difference in the
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ASR values at ¥ = 0.5 and x = x* is not significant.

The effect of power allocation on the ASR of TWR is inves-
tigated further in Fig. 6 by providing the contours of (x,() at
which the ASR loss is 1%, 5%, and 10% of the maximum ASR
achievable when the relay location is dy = df, Pr/ 0% =15dB,
and the BF is employed. In the figure, the mark ‘x” represents
the optimal (x*, ¢*) leading to the maximum ASR E{R }max. It
is observed in Fig. 6 that the ASR of TWR is rather robust to
the source and relay power allocation at various degrees of the
channel asymmetry. For several source antenna configurations
up to four antennas, we can guarantee 95% of the maximum
ASR with ¢ = 0.5 and x = 0.5.

V. CONCLUSION

In this paper, we have derived more accurate bounds on
the ASR when the TWR system consists of one AF relay and
two source terminals employing either the BF or OSTBC. The
new bounds are obtained by applying simple lower- and upper-
bounds on the instantaneous sum rate and applying some proper-
ties of gamma distribution. From the results shown in this paper,
it is observed that the proposed bounds are almost indistinguish-
able from the exact values and are much more accurate than the
conventional bounds in various conditions. It is also observed
that the relay location is more important than the power alloca-
tion to improve the ASR of TWR in asymmetric channels caused
by the heterogeneous antenna configuration of the source termi-
nals.
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