• Title/Summary/Keyword: sulfuric acid corrosion

Search Result 106, Processing Time 0.028 seconds

MWCNT, silver nanoparticles, CuBTC를 사용한 염소 이온 센서 합성

  • Gwak, Byeong-Gwan;Park, Su-Bin;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.101-101
    • /
    • 2018
  • Quantitative measurement of chloride ion concentration has an important role in various fields of electrochemistry, medical science, biology, metallurgy, architecture, etc. Among them, its importance of architecture is ever-growing due to unexpected degradations of building structure. These situations are caused by corrosion of reinforced concrete (RC) structure of buildings. And chloride ions are the most powerful factors of RC structure corrosion. Therefore, precise inspection of chloride ion concentration must be required to increase the accuracy of durability monitoring. Multi-walled Carbon nanotubes (MWCNTs) have high chemical resistivity, large surface area and superior electrical property. Thus, it is suitable for the channels of electrical signals made by the sensor. Silver nanoparticles were added to giving the sensing property. CuBTC, one of the metal organic frameworks (MOFs), was employed as a material to improve the sensing property because of its hydrophilicity and high surface area to volume ratio. In this study, sensing element was synthesized by various chemical reaction procedures. At first, MWCNTs were functionalized with a mixture of sulfuric acid and nitric acid because of enhancement of solubility in solution and surface activation. And functionalized MWCNTs, silver nanoparticles, and CuBTC were synthesized on PTFE membrane, one by one. Electroless deposition process was performed to deposit the silver nanoparticles. CuBTC was produced by room temperature synthesis. Surface morphology and composition analysis were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), respectively. X-ray photoelectron spectroscopy (XPS) was also performed to confirm the existence of sensing materials. The electrical properties of sensor were measured by semiconductor analyzer. The chloride ion sensing characteristics were confirmed with the variation of the resistance at 1 V.

  • PDF

Assessment of Semi-Quantitative Health Risks of Exposure to Harmful Chemical Agents in the Context of Carcinogenesis in the Latex Glove Manufacturing Industry

  • Yari, Saeed;Asadi, Ayda Fallah;Varmazyar, Sakineh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.205-211
    • /
    • 2016
  • Excessive exposure to chemicals in the workplace can cause poisoning and various diseases. Thus, for the protection of labor, it is necessary to examine the exposure of people to chemicals and risks from these materials. The purpose of this study is to evaluate semi-quantitative health risks of exposure to harmful chemical agents in the context of carcinogenesis in a latex glove manufacturing industry. In this cross-sectional study, semi-quantitative risk assessment methods provided by the Department of Occupational Health of Singapore were used and index of LD50, carcinogenesis (ACGIH and IARC) and corrosion capacity were applied to calculate the hazard rate and the biggest index was placed as the basis of risk. To calculate the exposure rate, two exposure index methods and the actual level of exposure were employed. After identifying risks, group H (high) and E (very high) classified as high-risk were considered. Of the total of 271 only 39 (15%) were at a high risk level and 3% were very high (E). These risks only was relevant to 7 materials with only sulfuric acid placed in group E and 6 other materials in group H, including nitric acid (48.3%), chromic acid (6.9%), hydrochloric acid (10.3%), ammonia (3.4%), potassium hydroxide (20.7%) and chlorine (10.3%). Overall, the average hazard rate level was estimated to be 4 and average exposure rate to be 3.5. Health risks identified in this study showed that the manufacturing industry for latex gloves has a high level of risk because of carcinogens, acids and strong alkalisand dangerous drugs. Also according to the average level of risk impact, it is better that the safety design strategy for latex gloves production industry be placed on the agenda.

Vibration Analysis for Failure Diagnosis of Cylinder Liner of Large Ship Engine (선박엔진의 실린더 라이너의 손상 진단을 위한 진동 분석법)

  • Koo, Hyunho;Cho, Yonsang;Park, Junhong;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Damage to the cylinder liner of large ship engines, such as scuffing on the surface, can occur very easily because it is operated in a corrosive environment. This scuffing may be due to oil film destruction and corrosive wear caused by water and sulfur included in the fuel, abrasive impurities, and poor lubricants. Thus, a method for monitoring the condition and diagnosing the failure of the cylinder liner and piston ring is needed. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which simulated an engine cylinder in a corrosive atmosphere. The lubricants used were base oil, stirred oil with distilled water, a NaCl solution, and dilute sulfuric acid. The friction coefficient and frequency spectrum were measured using a load cell and acceleration sense in each experimental condition. We then used these results to diagnose the failure of the cylinder liner.

Improvement of Anti-Corrosion Characteristics for Light Metal in Surface Modification with Sulfuric Acid Solution Condition (경금속 표면개질 시 황산 수용액 조건에 따른 내식성 개선 효과)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • Surface modification is a technology to form a new surface layer and overcome the intrinsic properties of the base material by applying thermal energy or stress onto the surface of the material. The purpose of this technique is to achieve anti-corrosion, beautiful appearance, wear resistance, insulation and conductance for base materials. Surface modification techniques may include plating, chemical conversion treatment, painting, lining and surface hardening. Among which, a surface modification process using electrolytes has been investigated for a long time in connection with research on its industrial application. The technology is highly favoured by various fields because it provides not only high productivity and cost reduction opportunities, but also application availability for components with complex geometry. In this study, an electrochemical experiment was performed on the surface of 5083-O Al alloy to determine an optimal electrolyte temperature, which produces surface with excellent corrosion resistance under marine environment than the initial surface. The experiment result, the modified surface presented a significantly lower corrosion current density with increasing electrolyte temperature, except for $5^{\circ}C$ of electrolyte temperature at which premature pores was created.

Effects of Addition of Al foil for Electrolytic Capacitors I. Shape Parameters of Etch Tunnel and Capacitance (전해 콘텐사용 알루미늄박의 애칭특성에 미치는 황산첨가의 영향 I. 에치터널의 형상 및 정전 용량)

  • Kim, Seong-Gap;Yu, In-Jong;Jang, Jae-Myeong;O, Han-Jun;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.369-374
    • /
    • 2000
  • In order to investigate the effects of addition of 1M sulfuric acid to the etching solution or 1M hydrochloric acid on the etching behavior of aluminum foil for electrolytic capacitors, the changes in the density of etch pit, the length and diameter of etch tunnels and the capacitance were analyzed using SEM, TEM, LCR meter etc. Sulfate ion as a corrosion inhibitor was contributed to the increase of the surface area comparing with chloride ion. By adding sul-furic acid the density of etch pit and the length of etched tunnel increased and the diameter of the tunnel decreased, resulting in the increase of capacitance. It was also shown that the capacitance decreased when the current density was below $0.9A/\textrm{cm}^2$, while remarkably increased in the other case.

  • PDF

Performance Evaluation of Antioxidizing Device for Protection of Car Body (자동차 차체 보호를 위한 산화방지 장치의 성능 평가)

  • Kim, Hae Sik;Yun, Yeong Jin;Ji, Jong Gi
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.444-456
    • /
    • 2002
  • To protect the occurrence of the oxidation of car body, we developed antioxidizing device made with sacrificial anode. Because car body is made of iron and iron-alloy and oxidation potential of Mg, Al and Zn is higher than that of iron, sacrificial anodes were made with Mg, Al and Zn. Accordingly, Mg, Al and Zn are better oxidizing than car body, iron and iron-alloy can be protected from oxidizing. We have made an antioxidizing device and evaluated their anti-corrosive effect for iron piece in the solution of hydrochloric, nitric and sulfuric acid using balance, SEM and XPS. When iron pieces were connected with antioxidizing device of car body, weight loss by oxidation was remarkably reduced and surface corrosion of iron piece was protected. It was shown that the surface of iron pieces which is not con-nected to the device was changed to iron(Ⅲ) oxide, Fe$_2$O$_3$. Therefore, if this device is attached to car body, corrosion and oxidation of car body will be reduced, considerably.

Study on the Re-corrosion Characteristics of Corrosion Products by Weeping of Iron Artifacts (철제유물 Weeping에 따른 부식화합물의 재부식 특성 연구)

  • Park, Hyung-Ho;Lee, Hye-Youn;Lee, Jae-Sung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • Excavated iron objects are preserved in stable condition through processes of conservation treatment because they are found in the form of various corrosion products. However, the conservation treatment leads to re-corrosion over time and accordingly, iron objects can be severely damaged, and therefore fundamental measures need to be prepared to control it. In this study, the types and characteristics of corrosion products were scientifically analyzed according to the re-corrosion of iron artifacts. In addition, the stability of the corrosion products was evaluated by exposing the standard samples under the re-corrosion environment. Re-corrosion proceeded with weeping in reddish brown on the cracks of iron artifacts. Weeping was detected akagan$\acute{e}$ite had a low hydrogen ion concentration and high chloride ion. The selection of standard sample goethite, lepidocrocite, hematite, and magnetite, were evaluated corrosive by weeping. After the samples were immersed in HCl(pH 1), $H_2SO_4$(pH 1), $H_2O$(pH 6) solution, they had been maintained for 180 days in relative humidity of 20%, 50%, 80% to investiage the changes of chemical components. As a result of analysis, the changes of chemical components were not showed in goethite, lepidocrocite, and hematite. But magnetite was changed to lepidocrocite in solution including chloride ion($Cl^-$) and to goethite and lepidocrocite solution including sulfuric acid($SO{_4}^{2-}$). Results of the study, in the case of magnetite known as s stable corrosion compound, it was identified the corrosion of magnetite occurs by corrosive ions, which means weeping generated in the iron artifacts can corrode magnetite as well as base metal.

A Study on Bio-chemical Sewer Pipe Corrosion In Korea (하수관거의 생·화학적 부식특성에 관한 연구)

  • Kim, Hwan-Gi;Song, Ho-Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.565-573
    • /
    • 2000
  • Sewer pipe in Korea is generally constructed with concrete pipes. Moreover, the sewer system is susceptible to the corrosion problem due to the regulation employing anaerobic treatment processes, such as domestic sewage treatment facilities, nightsoil septic tanks and so on. The objective of this study is investigated to experimental test of $H_2S$ production rate affecting corrosion of sewer pipe in Korea. In this study, tube-type and sealed-type reactor were used to examine the reactions in the microorganism suspended growth and biofilm. Furthermore. concentration changes were investigated with COD and sulfate reduction in each reactor. Sulfide production rate was $50.4mg-H_2S/g-VSS{\cdot}d$ in the sealed-type reactor and in the tube-type biofilm reactor was $2.8{\sim}18.8g-H_2S/m^2{\cdot}d$.

  • PDF

The Variation of Cu Recovery by Electrowinning Conditions and Their Mineralogical Characteristics from Cathodic Deposition-powdered Copper (전기분해 조건에 따른 구리 회수 변화와 음극회수-구리분말에 대한 광물학적 특성)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.183-195
    • /
    • 2014
  • In order to study the mineralogical characteristics of a cathodic deposition-metallic powder, electrowinning experiments were carrier out on different electrolytic solutions at varying electric distances and electric currents. Under the same experimental conditions, Cu recovery was obtained much more effectively using a sodium chloride electrolyte than with a sulfuric acid electrolyte. In XRD analysis, copper ($Cu^0$), chalcanthite and cuprite were identified in the sulfuric acid electrolyte, while copper, nantokite and chalcanthite were observed in the sodium chloride electrolyte. In the sodium chloride electrolyte solution, increasing the electric distance and the electric current increased the Cu recovery rate, anode weight and anodic corrosion. The results of XRD analysis with non-pulverized cathodic deposition-metallic powder showed the average copper crystallite size was increased by increasing the electric current and decreasing the electric distance. It is suggested that the mass transfer was controlled with diffusion on the boundary between the electrode and the electrolytic solution due to the formation of dendrite copper.

A Study on the Field Application of Alkaline Tunnel Wastewater to Neutralization Using CO2 (터널시공 시 이산화탄소(CO2)를 이용한 알칼리성 폐수의 중화처리 현장적용 연구)

  • Park, Young-Jin;Lee, Ho-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.27-34
    • /
    • 2020
  • Strong alkaline waste water is generated in large quantities due to using Concrete, shotcrete and various compounds in tunnel construction sites. As the release of this alkaline waste water will contaminate the stream water, it has to be neutralized. Currently, this waste water is mainly neutralized by using sulfuric acid or hydrochloric acid, but the risks of corrosion and handling of facilities are inherent and the chemical control act requires strict management measures. Therefore, using CO2 (carbon dioxide) as an alternative has been highlighted and various indoor experiment studies have been conducted to prove its potential. However, it is difficult to apply CO2 to the site because it is still completely lacking in field application research and shows different characteristics from indoor experiments. In this study, the actual site applicability is verified through field testing.