DOI QR코드

DOI QR Code

The Variation of Cu Recovery by Electrowinning Conditions and Their Mineralogical Characteristics from Cathodic Deposition-powdered Copper

전기분해 조건에 따른 구리 회수 변화와 음극회수-구리분말에 대한 광물학적 특성

  • Cho, Kang-Hee (Department of Energy and Resource Engineering, Chosun University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Department of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 조강희 (조선대학교 에너지.자원공학과) ;
  • 김봉주 (조선대학교 에너지.자원공학과) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2014.06.26
  • Accepted : 2014.12.17
  • Published : 2014.12.30

Abstract

In order to study the mineralogical characteristics of a cathodic deposition-metallic powder, electrowinning experiments were carrier out on different electrolytic solutions at varying electric distances and electric currents. Under the same experimental conditions, Cu recovery was obtained much more effectively using a sodium chloride electrolyte than with a sulfuric acid electrolyte. In XRD analysis, copper ($Cu^0$), chalcanthite and cuprite were identified in the sulfuric acid electrolyte, while copper, nantokite and chalcanthite were observed in the sodium chloride electrolyte. In the sodium chloride electrolyte solution, increasing the electric distance and the electric current increased the Cu recovery rate, anode weight and anodic corrosion. The results of XRD analysis with non-pulverized cathodic deposition-metallic powder showed the average copper crystallite size was increased by increasing the electric current and decreasing the electric distance. It is suggested that the mass transfer was controlled with diffusion on the boundary between the electrode and the electrolytic solution due to the formation of dendrite copper.

전기분해로 회수된 음극회수-금속분말의 광물학적 특성을 조사하기 위하여 전해질 종류, 전극간격 및 전류변화에 대하여 전기분해 실험을 수행하였다. 황산구리($CuSO_4{\cdot}5H_2O$) 분말에 대한 황산 및 소금 전해질 용액을 사용한 전기분해 결과, 소금 전해질 용액에서 Cu의 수율이 다소 높았다. XRD 분석결과, 전해질 용액의 종류에 따라 광종이 변화되었다. 즉 구리($Cu^0$), chalcanthite 및 cuprite 등은 황산 전해질 용액에서, 그리고 구리, nantokite 및 chalcanthite 등은 소금 전해질 용액에서 나타나는 것을 확인하였다. 특히 소금 전해질 용액에서, 전극간격 및 전류(또는 전류밀도)는 Cu 회수율, 양극무게 감소와 비례하였으나 양극부식 강도는 전류와 비례 그리고 전극간격과는 반비례하는 경향을 보였다. 미분쇄하지 않은 음극-회수 금속분말에 대한 XRD분석에서 구리결정의 평균크기는 전극간격의 감소 및 전류가 증가할수록 증가하였다. 수지상 구리가 형성되는 것으로 보아 전극/용액 경계면에서 물질전달은 확산에 의해 통제되는 것으로 사료된다.

Keywords

References

  1. Alam, M.S., Tanaka, M., Koyama, K., Oishi, T., and Lee, J.C. (2007) Electrolyte purification in energy-saving monovalent copper elelctrowinning processes, Hydrometallurgy, 87, 36-44. https://doi.org/10.1016/j.hydromet.2006.12.001
  2. Andersen, T.N. (1983) Nodulation of electrodeposited copper due to suspended particulate, Journal of Applied Electrochemistry, 13, 429-438. https://doi.org/10.1007/BF00617517
  3. Chatfield, T.E.C., Wruss, W., and Maly-Schreiber, M. (1985) The use of X-ray diffraction peak-broadening analysis to characterize ground $Al_2O_3$ powder, Journal of Materials Science, 20, 1266-1274. https://doi.org/10.1007/BF01026322
  4. Cooper, W.C. (1985) Advances and future prospects in copper electrowinning, Journal of applied Electrochemistry, 15, 789-805. https://doi.org/10.1007/BF00614357
  5. Cullity, B.D. and Stock, S.R. (2001) Elements of X-ray diffraction. Prentice Hall, 678p.
  6. Drits, V., Srodon, J., and Eberl, D.D. (1997) XRD measurement of mean crystallite thickness of illite and illite/smectitie; reappraisal of the Kubler index and the Scherrer equation, Clays and Clay Minerals, 45, 461-475. https://doi.org/10.1346/CCMN.1997.0450315
  7. Fornari, P. and Abbruzzese, C. (1999) Copper and nickel selective recovery by electrowinning from electronic and galvanic industrial solutions, Hydrometallurgy, 52, 209-222. https://doi.org/10.1016/S0304-386X(99)00019-5
  8. Gorgievski, M., Bozic, D., Stankovic, V., and Bogdanovic, G. (2009) Copper electrowinning from acid mine drainage: a case study from the closed mine "Cerovo", Journal of Hazardous Materials, 170, 716-721. https://doi.org/10.1016/j.jhazmat.2009.04.135
  9. Jaboyedoff, M., Kubler, B., and Thelin, P. (1999) An empitical Scherrer equation for weakly swelling mixed-layer minersls, especially illite-smectite, Clay Minerals, 34, 601-617. https://doi.org/10.1180/000985599546479
  10. Jung, C.H., Park, H.J., Chung, I.H., and Na, C.K. (2007) Pollution Property of Heavy Metal in Goseong Cu Mine Area, Kyungsangnam-do, Korea, Journal of Economic and Environmental Geology, 40, 347-360.
  11. Kentish, S.E. and Stevens, G.W. (2001) Innovations in separations technology for the recycling and re-use of liquid waste streams, Chemical Engineering Journal, 84, 149-159. https://doi.org/10.1016/S1385-8947(01)00199-1
  12. Lakshmanan, V.I., Mackinnon, D.J., and Brannen, J.M. (1977) The effect of chloride ion in the electrowinning of copper, Journal of Applied Electrochemistry, 7, 81-90. https://doi.org/10.1007/BF00615534
  13. Liu, J., Aruguete, D.M., Jinschek, J.R., Rimstidt, J.D., and Hochella Jr, M.F., (2008) The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape, and aggregation state, Journal of The Geochemical Society and The Meteoritical Society, 72, 5984-5996.
  14. Lonnberg, B. (1994) Characterization of milled Si3N4 powder using X-ray peak broadening and surface area analysis. Journal of materials Science, 29, 3224-3230. https://doi.org/10.1007/BF00356667
  15. Moskalyk, R.R., Alfantazi, A., Tombalakian, A.S., and Valic, D. (1999) Anode effects in electrowinning, Minerals Engineering, 12, 65-73. https://doi.org/10.1016/S0892-6875(98)00120-4
  16. Nikolic, N.D., Pavlovic, Lj.J., Pavlovic, M.G., and Popov, K.I. (2008) Morphologies of electrochemically formed copper powder particles and their dependence on the quantity of evolved hydrogen, Powder Technology, 185, 195-201. https://doi.org/10.1016/j.powtec.2007.10.014
  17. Nikolic, N.D., Popov, K.I., Pavlovic, Lj.J., and Pavlovic, M.G. (2006) The effect of hydrogen codeposition on the morphology of copper electrodeposits. I. the concept of effective overpotential, Journal of Electroanalytical Chemistry, 588, 88-98. https://doi.org/10.1016/j.jelechem.2005.12.006
  18. O'keefe, T.J. and Hurst, L.R. (1978) The effect of antimony, chloride ion, and glue on copper elelctrorefining, Journal of Applied Electrochemistry, 8, 109-119. https://doi.org/10.1007/BF00617669
  19. Panda, B. and Das, S.C. (2001) Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid, Hydrometallurgy, 59, 55-67. https://doi.org/10.1016/S0304-386X(00)00140-7
  20. Perez-Maqucda, L.A., Duran, A., and Perez-Rodeiguez, J.L. (2005) Preparation of submicron talc particles by sonication, Applied Clay Science, 28, 245-255. https://doi.org/10.1016/j.clay.2004.01.012
  21. Perez-Maqueda, L.A., Duran, A., and Perez-Rodeiguez, J.L. (2005) Preparation of submicron talc particles by sonication, Applied Clay Science, 28, 245-255. https://doi.org/10.1016/j.clay.2004.01.012
  22. Perez-Maqueda, L.A., Montes, O.M., Gonzalez-Macias, E.M., Franco, F., Poyato, J., and Perez-Rodriguez, J.L. (2004) Thermal transformations of sonicated pyrophyllite, Applied Clay Science. 24, 201-207. https://doi.org/10.1016/j.clay.2003.03.003
  23. Perez-Rodriguez, J.L. and Sanchez Soto, P.J. (1991) The influence of the dry grinding on the thermal behaviour of pyrophyllite, Journal of Thermal Analysis, 37, 1401-1413. https://doi.org/10.1007/BF01913477
  24. Perez-Rodriguez, J.L. and Sanchez Soto, P.J. (1991) The influence of the dry grinding on the thermal behaviour of pyrophyllite, Journal of Thermal Analysis, 37, 1401-1413. https://doi.org/10.1007/BF01913477
  25. Perez-Rodriguez, J.L., Wiewiora, A., Ramirez-Valle, V., Duran, A., and Perez-Maqueda, L.A. (2007) Preparation of nano-pyrophyllite: comparative study of sonication and grinding, Journal of Physics and Chemistry of Solids, 68, 1225-1229. https://doi.org/10.1016/j.jpcs.2007.01.007
  26. Petersen, J. and Dixon, D.G. (2002) Thermophilic heap leaching of a chalcopyrite concentrate, Minerals Engineering, 15, 777-785. https://doi.org/10.1016/S0892-6875(02)00092-4
  27. Popov, K.I., Dijukic, Lj.M., Pavlovic, M.G., and Maksimovic, M.D. (1979) The critical overpotential for copper dendrite formation, Journal of Applied Electrochemistry, 9, 527-531. https://doi.org/10.1007/BF00617565
  28. Prengaman, R.D. and Siegmund, A. (1999) Improved copper electrowinning operations using wrought Pb-Ca-Sn anodes, Copper 99-Cobre 99 International Symposium (Phoenix, Arizona), October 10-13.
  29. Saji, J. and Reddy, M.I.P. (2001) Liquid-liquid extraction separation of iron (III) from titania wastes using TBP-MIBK mixed solvent system, Hydrometallurgy, 61, 81-87. https://doi.org/10.1016/S0304-386X(01)00146-3
  30. Suarez, D.F. and Olson, F.A. (1992) Nodulation of electrodeposited copper in the presence of thiourea, Journal of Applied Electrochemistry, 22, 1002-1010. https://doi.org/10.1007/BF01029577
  31. Sun, B.K. and O'Keefe, T.J. (1998) Growth of electrolytic copper dendrites and their adhesion to an epoxy resin, Surface and Coating Technology, 106, 44-52. https://doi.org/10.1016/S0257-8972(98)00488-5
  32. Torma, A.E. Ashman, P.R., Olson, T.M., and Bosecker, K. (1979) Microbiological leaching of a chalcopyrite concentrate and recovery of copper by solvent extraction and electrowinning, metall, 33, 479-484.
  33. Uhlik, P., Sucha, V., Eberl, D.D., Puskelova, L., and Caplovicova, M. (2000) Evolution of pyrophyllite particle size during dry grinding, Clay Minerals, 35, 423-432. https://doi.org/10.1180/000985500546774
  34. Veglio, F., Quaresima, R., Fornari, P., and Ubaldini, S. (2003) Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning, Waste Management, 23, 245-252. https://doi.org/10.1016/S0956-053X(02)00157-5
  35. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose, Hydrometallurgy, 60, 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  36. Venkateswarlu, K., Bose, A.C., and Rameshbabu, N. (2010) X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis, Physica B, 405, 4256-4261. https://doi.org/10.1016/j.physb.2010.07.020
  37. Venkateswarlu, K., Bose, A.C., and Rameshbabu, N. (2010) X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis, Physica B, 405, 4256-4261. https://doi.org/10.1016/j.physb.2010.07.020
  38. Wang, S., 2008, Novel electrowinning technologies: the treatment and recovery of metals from liquid effluents, JOM, October, 41-45.
  39. Wei, X., Viadero, Jr, R.C., and Buzby, K.M. (2005) Recovery of iron and aluminum from acid mine drainage by selective precipitation, Environmental Engineering Science, 22, 745-755. https://doi.org/10.1089/ees.2005.22.745
  40. Wiewiora, A., Drapala, J., Perez-Rodriguez, J.L., Perez-Maqueda, L.A., and Grabska, D. (2005) Effect of sonication on structure and particles division of pyrophyllite, Acta Geodyn. Geomater. 2, 177-188.
  41. Wiewiora, A., Sanchez-Soto, P.J., Aviles, M.A., Justo, A., and Perez-Rodriguez, J.L. (1993) Effect of dry grinding and leaching on polytypic structure of ptrophyllite, Applied Clay Science, 8, 261-282. https://doi.org/10.1016/0169-1317(93)90008-O
  42. Wiewiora, A., Sanchez-Soto, P.J., Aviles, M.A., Justo, A., and Perez-Rodriguez, J.L. (1993) Effect of dry grinding and leaching on polytypic structure of ptrophyllite, Applied Clay Science, 8, 261-282. https://doi.org/10.1016/0169-1317(93)90008-O
  43. Zak, A.K., Majid, W.H.M., Abrishami, M.E., and Yousefi, R. (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sciences, 13, 251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

Cited by

  1. The Mineralogical and Chemical Characteristics of Slag from Kazakhstan and Leaching of Cu and Fe vol.28, pp.1, 2015, https://doi.org/10.9727/jmsk.2015.28.1.17