• Title/Summary/Keyword: sulfonate

Search Result 484, Processing Time 0.028 seconds

The Mechanism of the Decomposition of a Bronchodilator, S-Nitroso-N-acetyl-D,L-penicillamine (SNAP), by a Bronchoconstrictor, Aqueous Sulfite: Detection of the N-Nitrosohydroxylamine-N-sulfonate ion

  • Holder, Alvin A.;Marshall, Sophia C.;Wang, Peng George;Kwak, Chee-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.350-356
    • /
    • 2003
  • The mechanism of the decomposition of a bronchodilator, S-nitroso-N-acetyl-D,L-penicillamine (SNAP) by a bronchoconstrictor, aqueous sulfite, has been investigated in detail. The decomposition was studied using a conventional spectrophotometer at 336 nm over the ranges: 0.010 ≤ $[S^{IV}]_T$ ≤ 0.045 mol $dm^{-3}$, 3.96 ≤ pH ≤ 6.80 and 15.0 ≤ θ≤ 30.0 ℃, 0.60 ≤ I ≤ 1.00 mol $dm^{-3}$, and at ionic strength 1.00 mol $dm^{-3}$ (NaCl). The rate of reaction is dependent on the total sulfite concentration and pH in a complex manner, i.e., $k_{obs}\;=\;k_1K_2[S^{IV}]_T/ ([H^+]\;+\;K_2)$. At 25.0 ℃, the second order rate constant, $k_1$, was determined as $12.5\;{\pm}\;0.15\;mol^{-1}\;dm^3\;s^{-1}$. ${\Delta}H^{neq}\;=\;+32\;{\pm}\;3 kJ\;mol^{-1}\;and\;{\Delta}S^{\neq}\;=\;-138\;{\pm}\;13\;J\;mol^{-1}K^{-1}$. The N-nitrosohydroxylamine-N-sulfonate ion was detected as an intermediate before the formation of any of the by-products, namely, N-acetyl-D,L-penicillamine. The effect of concentration of aqueous copper(Ⅱ) ions on this reaction was also examined at pH 4.75, but there was no dependence on $[Cu^{2+}]$. In addition, the $pK_a$ of SNAP was determined as 3.51 ± 0.06 at 25.4 ℃ [I = 1.0 mol $dm^{-3}$ (NaCl)].

The Effects of Surfactants on the Biosynthesis of Galactolipid and the Composition of Fatty Acids in Chloroplast Envelope rind Thylakoid Membrane of Chlorella ellipsoidea

  • Choe, Eun-A;Cheong, Gyeong-Suk;Lee, Cheong-Sam
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.341-349
    • /
    • 1998
  • To analyze the effects of surfactants on the biosynthesis of galactolipid and the composition of fatty acids, the chloroplast envelope and thylakoid membrane were cultivated in medium treated with anionic surfactants, such as linear alkylbenzene sulfonate (0.002%, LAS), a-olefin sulfonate (O.01%, AOS), and sodium lauryl ether sulfate (0.08%, SLES), respectively. During the cultivation, the chloroplast envelope and thylakoid membrane were isolated from the cells collected at the early and middle phase of the culture and the contents of their fatty acid composition were compared with the control. When treated with surfactants, the contents of total lipid MDGD methylesters, and DGDG methylesters decreased significantly when compared with the control. It was also confirmed that more unsaturated fatty acids were involved in the biosynthesis of galactolipid. The fatty acids utilized in the biosynthesis of MGDG were in the chloroplast envelope and in the control, and linoleic acid in LAS, linolenic acid and oleic acid in AOS, and linolenic acid and oleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control linolenic acid and stearic acid in LAS, oleic acid and linolenic acid in AOS, oleic acid and linolenic acid in SLES. In the thylakoid membrane, the major fatty acids in the biosynthesis of MGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, linolenic acid and palmitoleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, palmitoleic acid and oleic acid in SLES.

  • PDF

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

Spectral and Thermal Studies of Transition Metal PSSA Ionomers

  • Shim, Il-Wun;Risen, William M. Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.368-376
    • /
    • 1988
  • Transition metal PSSA ionomers containing Co(II), Ni(II), Cr(III), Ru(III), and Rh(III) are investigated by IR, Far-IR, UV-Vis and DSC. Reliable IR Spectroscopic criteria are established for assessing the degree of ion-exchange of PSSA ionomers and the local structures around metal cations in them. In the hydrated transition metal PSSA ionomers, the ionic groups are solvated by water molecules and there is no significant interactions between sulfonate group and metal cations. The visible spectra indicated that metal cations are present as [M$(H_2O)_6$]$^{n+}$ with Oh symmetry. Their $T_g$ values increase as the extent of ionic site concentration increases, but there is no direct dependence of $T_g$ on the nature of metal cations or their oxidation states. Thus, the water content in PSSA ionomer is found to have dominant influence on $T_g$ of hydrated transition metal PSSA ionomers. Dehydration of the hydrated transition metal PSSA ionomers results in direct interaction between ionic groups and significant color changes of the ionomers due to the changes of the local structures around metal cations. On the base of spectral data, their local structures are discussed. In case of dehydrated 12.8 and 15.8 mol % transition metal PSSA ionomers, no glass transition is observed in 25-$250^{\circ}C$ region and this is believed to arise from the formation of highly crosslinked structures caused by direct coordination of sulfonate groups of metal cations. In the 6.9 mol % transition metal PSSA ionomers, the glass transition is always observed whether they are hydrated or dehydrated and this is though to be caused by the sufficient segmental mobility of the polymer backbone.

Propagation and interaction of two dimensional solitary waves in organic single crystal of polydiacetylene para-toluene sulfonate (유기단결정 Polydiacetylene Para-toluene Sulfonate에서 2차원 공간고립파의 진행과 상호 작용 전산모의)

  • 류재명;조재흥;황보창권;정진호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.400-407
    • /
    • 2002
  • Two dimensional solitary waves are stably propagated in a saturable medium which has a saturable nonlinear index as input intensity. However, in the case of low intensity. a negative fifth-order nonlinear medium has properties of a saturable medium. So a Gaussian beam travels stably. The propagation process into the fifth order nonlinear medium of the Gaussian beam with a weak intensity is investigated by using the computer simulation of the two-dimensional nonlinear Schrodinger equation. As a result, it is confirmed that the two-dimensional spatial solitary waves are stably propagated in this medium when the incident powers are self-trapping powers. In the condition of the phase difference and collisional angle between two input beams of 180 degree and 0.05 degree, respectively, we can confirm that all optical switching is as simple as controlling the incident power of one input beam.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Dispersion Behavior of Graphene with Different Solvents and Surfactants (용매와 분산제의 종류에 따른 그래핀의 분산 거동)

  • Perumal, Suguna;Lee, Hyang Moo;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.20 no.2
    • /
    • pp.53-60
    • /
    • 2019
  • Stable graphene dispersions in various organic solvents and in water were achieved via noncovalent functionalization of graphene surfaces using different types of commercially available surfactants. Stable dispersions were obtained in short time sonication, 3 h. In NMP, graphene with Tween and Span series, and with Pluronic surfactants showed stable dispersions. In ethanol, nitrogen based surfactants showed stable dispersions. In water and dichloromethane partially stable graphene dispersions were obtained using poly(4-vinyl pyridine) and sodium dodecyl sulfonate surfactants. Large scale productions of stable dispersions were successful using poly(4-vinyl pyridine), poly(vinyl pyrrolidone), and poly(2-(dimethylamino)ethyl methacrylate). Thus, this work will serve as a library to select the surfactants for different solvent systems.

Increase of CO2 Injection Ratio Using Surfactants Based on the Micromodel Experiment (마이크로모델 실험 기반 계면활성제를 활용한 이산화탄소 주입효율 향상)

  • Seokgu, Gang;Jongwon, Jung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.55-61
    • /
    • 2022
  • Carbon dioxide is one of the greenhouse gases in the atmosphere and much research is underperforming in reducing carbon dioxide. Geological carbon dioxide storage is considered the primary technique for global warming prevention. So, technic development for storing carbon dioxide is required. Using surfactant is considered an effective material for geological carbon dioxide storage. However, research on using surfactants for carbon dioxide sequestration is not enough. In this study, a 2D micromodel experiment depends on the surfactant type (sodium dodecyl sulfate and sodium dodecylbenzene sulfonate), concentration and carbon dioxide injection rate. As result, geological carbon dioxide sequestration efficiency is increased according to surfactant concentration and carbon dioxide injection rate increase. However, efficiency no more increases after critical concentration and rate.

Evaluation of perfluorinated compounds removal performance and automatic regeneration performance by activated carbon adsorption process (활성탄 흡착공정에 의한 과불화화합물의 제거 및 활성탄 자동재생 성능 평가)

  • Jung, Jinho;Lee, Sanghoon;Yun, Wonsang;Choi, Daehee;Jung, Jinyoung;Han, Ihnsup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • In this study, the removal efficiency of PFCs(perfluorinated compounds) in the GAC(granule activated carbon) process based on the superheated steam automatic regeneration system was investigated in laboratory scale and pilot-scale reactor. Among PFCs, PFHxS(perfluorohexyl sulfonate) was most effectively removed. The removal efficiency of PFCs was found to be closely related to the EBCT, and the removal efficiencies of PFOA(perfluorooctanoic acid), PFOS(perfluorooctyl sulfonate), and PFHxS were 43.7, 75, and 100%, respectively, under the condition of EBCT of 6 min. Afterward, PFOA, PFOS, and PFHxS exhibited the earlier breakthrough time in the order. After that, GAC was regenerated, and the removal efficiency of the PFCs before and after regeneration was compared. As a result, it was shown that the PFCs removal efficiency in the regenerated GAC process were higher, and that of PFOA was improved to 75%. The findings of this study indicate the feasibility of the superheated steam automatic regeneration system for the stable removal of the PFCs, and it was verified that this technology can be applied stably enough even in field conditions.

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Steroid Hormone Receptors, $5{\alpha}$-reductase and Aromatase in the Rat Epididymis (흰쥐 부정소 내의 스테로이드 호르몬 수용체, $5{\alpha}$-reductase 그리고 Aromatase 발현에 미치는 EDS의 영향)

  • Son, Hyeok-Joon;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.187-193
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS), a Leydig cell specific toxicant, has been widely used to create the reversible testosterone withdrawal rat model. Though the maintenance of epididymal structure and function is highly dependent on the testosterone secreted from testis, its derivatives, dihydroxytestosterone(DHT) and estrogen, might have crucial roles. The aim of present study was to monitor the expression patterns of sex steroid receptors, cytochrome P450 aromatase(P450arom) and $5{\alpha}$-reductase in the rat epididymis up to 7 weeks after EDS injection. Adult male rats($350{\sim}400g$) were injected with a single does of EDS(75 mg/kg i.p.) and sacrificed on weeks 0, 1, 2, 3, 4, 5, 6 and 7. The transcriptional activities of the target genes were evaluated by semi-quantitative RT-PCRs. The transcript level of estrogen receptor alpha($ER{\alpha}$) in EDS group was significantly higher than control level on week 1(P<0.01). After week 2, there was no significant difference in $ER{\alpha}$ levels between EDS group and control. The transcript level of estrogen receptor beta($ER{\beta}$) in EDS group was significantly higher than control level on week 1(P<0.05), lowered on weeks 2 and 3(P<0.05 and P<0.01, respectively), fluctuated during weeks 4 and 6, and elevated on week 7(P<0.05). The androgen receptor (AR) message levels increased significantly week 2(P<0.01), then returned to control level on week 3. In contrast, expression of cytochrome P450 aromatase(P450arom) decreased sharply during weeks $1{\sim}3$(P<0.01 on weeks 1 and 2; P<0.05 on week 3), then went back to control level on week 4. The mRNA level of $5{\alpha}$-reductase type 2($5{\alpha}$-RT2) increased significantly on week 4(P<0.01), then returned to control level. The present study indicated that EDS administration could induce reversible alterations in the transcriptional activities of sex steroid hormone receptors and androgenconverting enzymes in rat epididymis. EDS injection model will be useful to clarify the regulation mechanism of mammalian epididymal physiology.

  • PDF