DOI QR코드

DOI QR Code

Spectral and Thermal Studies of Transition Metal PSSA Ionomers

  • Shim, Il-Wun (Department of Chemistry, Chung-Ang University) ;
  • Risen, William M. Jr. (Department of Chemistry, Brown University)
  • Published : 1988.12.20

Abstract

Transition metal PSSA ionomers containing Co(II), Ni(II), Cr(III), Ru(III), and Rh(III) are investigated by IR, Far-IR, UV-Vis and DSC. Reliable IR Spectroscopic criteria are established for assessing the degree of ion-exchange of PSSA ionomers and the local structures around metal cations in them. In the hydrated transition metal PSSA ionomers, the ionic groups are solvated by water molecules and there is no significant interactions between sulfonate group and metal cations. The visible spectra indicated that metal cations are present as [M$(H_2O)_6$]$^{n+}$ with Oh symmetry. Their $T_g$ values increase as the extent of ionic site concentration increases, but there is no direct dependence of $T_g$ on the nature of metal cations or their oxidation states. Thus, the water content in PSSA ionomer is found to have dominant influence on $T_g$ of hydrated transition metal PSSA ionomers. Dehydration of the hydrated transition metal PSSA ionomers results in direct interaction between ionic groups and significant color changes of the ionomers due to the changes of the local structures around metal cations. On the base of spectral data, their local structures are discussed. In case of dehydrated 12.8 and 15.8 mol % transition metal PSSA ionomers, no glass transition is observed in 25-$250^{\circ}C$ region and this is believed to arise from the formation of highly crosslinked structures caused by direct coordination of sulfonate groups of metal cations. In the 6.9 mol % transition metal PSSA ionomers, the glass transition is always observed whether they are hydrated or dehydrated and this is though to be caused by the sufficient segmental mobility of the polymer backbone.

Keywords

References

  1. Ionic Polymers Holliday, I.(ed.)
  2. Am. Chem. Soc. Ions in Polymers Eisenberg, A.(ed.)
  3. J. Polym. Sci. Polym. Phys. Ed. v.20 D. G. Pieff;R. A. Weiss;R. D. Lundberg
  4. J. Polym. Sci. Polym. Phys. Ed. v.19 T. D. Gierke;G. E. Munn;F. C. Wilson
  5. J. Polym. Sci. Polym. Lett. Ed. v.21 R. A. Weiss;J. Lefelor;H. Toriumi
  6. J. Electrochem. Soc. Electrochem. Sci., and Technol. v.131 Ogumi, Z.;Takehara, Z.;Yoshizawa, S.
  7. J. Electrochem. Soc. Electrochem. Sci., and Technol. v.131 N. E. Prieto;C. R. Martin
  8. J. Am. Chem. Soc. v.106 D. A. Buttry;F. C. Anson
  9. U. S. Patent 4,414,409 F. J. Waller
  10. J. Am. Chem. Soc. v.106 W. H.Kao;T. Kuwana
  11. Macromolecules v.13 W. Siebourg;R. D. Lndberg;R. W. Lenz
  12. J. Polym. Sci. Polym. Phys. Ed. v.20 R. D. Lundberg;R. R. Philips
  13. J. Polym. Sci. Polym. Phys. Ed. v.22 V. D. Mattera, Jr.;W. M. Risen, Jr.
  14. Amer. Chem. Soc. Symposium Series v.302 W. M. Risen, Jr,(et al.)
  15. J. Catal. v.94 I. W. Shim;V. D. Mattera, Jr.;W.M. Risen, Jr.
  16. Inorg. Chem. v.23 V. D. Mattera, Jr.;P. J. Squattrito;W. M. Risen, Jr.
  17. U. S. Patent 3,870,841 H. S. Makowski;R. D. Lundberg;G. H. Snigbal
  18. J. Polym. Sci. v.27 C. Y. Liang;S. Krimm
  19. Hydration and Intermolecular Interaction G. Zunde
  20. Spectrochim. Acta. v.21 G. Kresze;E. Ropte;B. Schrader
  21. Chem. Ber. v.102 E. Linder;G. Vitzthum
  22. Acta Chem. Scandina v.27 B. Nyberg;R. Larsson
  23. Spectrochim. Acta v.19 G. Newman;D.B. Powell
  24. J. Polym. Sci. Polym. Phys. Ed. v.17 G. B. Rouse;A. J. Tsatsas;A. Eisenberg;W.M. Risen, Jr.
  25. Chem. Phy. Lett. v.7 A. T. Tsatsas;W. M. Risen, Jr.
  26. ONR Technical Report 79-01(U.S.A.) S. L. Peluso;A. T. Tsatsas;W. M. Risen, Jr.
  27. J. Chem. Soc. (A) D. A. Brown;D. Cunningham;W. K. Glass
  28. J. Am. Chem. Soc. v.92 K. Nakamoto;C. Udovich;J. Takemoto
  29. Inorg. Chem. v.14 Y. Kanamura;K. Nakamoto
  30. Electronic Structure and Magenetism of Inorganic Compounds : Specialist Periodical Reports v.1-5
  31. Inorganic Electronic Spectroscopy A. B. P. Lever
  32. Introduction to Ligand Fields B. N. Figgis
  33. Electronic Spectra of Transition Metal Complexes D. Sutton
  34. Introduction to Polymers R. J. Young
  35. Principles of Polymer Chemistry P. J. Flory
  36. Ion Containing Polymers ; Physical Properties and Structures A. Eisenberg;M. King
  37. In Modern aspects of the Vitreous state J. H. Gibbs;J. D. Markenzie(ed.)
  38. J. Polym. Sic. Polm. Phys. Ed. v.20 R. A. Weiss

Cited by

  1. The effects of transition metal complexes on the permeation of small gas molecules through cellulose acetate membranes vol.60, pp.2, 1988, https://doi.org/10.1016/s0376-7388(00)81535-5
  2. Tangible plasticization/filler effects of sodium salts of dimer acids on the mechanical properties of styrene ionomers vol.129, pp.5, 1988, https://doi.org/10.1002/app.38836
  3. A Study on the Role of -SO3- Ions in the Dehydration Limit of Poly(styrene-co-styrenesulfonic acid) Membrane vol.52, pp.3, 1988, https://doi.org/10.7473/ec.2017.52.3.180