Browse > Article
http://dx.doi.org/10.17702/jai.2019.20.2.53

Dispersion Behavior of Graphene with Different Solvents and Surfactants  

Perumal, Suguna (Department of Applied Chemistry, Kyungpook National University)
Lee, Hyang Moo (Department of Applied Chemistry, Kyungpook National University)
Cheong, In Woo (Department of Applied Chemistry, Kyungpook National University)
Publication Information
Journal of Adhesion and Interface / v.20, no.2, 2019 , pp. 53-60 More about this Journal
Abstract
Stable graphene dispersions in various organic solvents and in water were achieved via noncovalent functionalization of graphene surfaces using different types of commercially available surfactants. Stable dispersions were obtained in short time sonication, 3 h. In NMP, graphene with Tween and Span series, and with Pluronic surfactants showed stable dispersions. In ethanol, nitrogen based surfactants showed stable dispersions. In water and dichloromethane partially stable graphene dispersions were obtained using poly(4-vinyl pyridine) and sodium dodecyl sulfonate surfactants. Large scale productions of stable dispersions were successful using poly(4-vinyl pyridine), poly(vinyl pyrrolidone), and poly(2-(dimethylamino)ethyl methacrylate). Thus, this work will serve as a library to select the surfactants for different solvent systems.
Keywords
graphene dispersion; surfactants; dispersion behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Soldano, A. Mahmood, and E. Dujardin, Carbon, 48, 2127 (2010).   DOI
2 A. K. Geim, and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
3 C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).   DOI
4 C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, Angew. Chem., Int. Ed., 48, 7752 (2009).   DOI
5 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).   DOI
6 K. S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI
7 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009).   DOI
8 I. Forbeaux, J. M. Themlin, and J. M. Debever, Phys. Rev., 58, 16396 (1998).   DOI
9 E. Ou, Y. Xie, C. Peng, Y. Song, H. Peng, Y. Xiong, and W. Xu, RSC Adv., 3, 9490 (2013).   DOI
10 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. Mcgovern, B. Holand, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, Nat. Nanotechnol., 3, 563 (2008).   DOI
11 M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg and J. N. Coleman, J. Am. Chem. Soc., 131, 3611 (2009).   DOI
12 W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010).   DOI
13 Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, Langmuir, 26, 3208 (2010).   DOI
14 N.-W. Pu, C.-A. Wang, Y.-M. Liu, Y. Sung, D.-S., Wang, and M.-D. Ger, J. Taiwan Chem. Eng., 43, 140 (2012).   DOI
15 E.- Y. Choi, T. H. Han, J. Hong, J. E. Kim, S. H. Lee, H. W. Kim, and S. O. Kim, J. Mater. Chem., 20, 1907 (2010).   DOI
16 M. Nikdel, M. Salami-Kalajahi, and M. S. Hosseini, RSC Adv., 4, 16743 (2014).   DOI
17 A. B.Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. K. Stubos, and C. Trapalis, Solid State Commun., 149, 2172 (2009).   DOI
18 S. De, P. J. King, M. Lotya, A. O'Neill, E. M. Doherty, Y. Hernandez, G. S. Duesberg, and J. N. Coleman, Small, 6, 458 (2009).   DOI
19 A. A. Green, M. C. Hersam, Nano Lett., 9, 4031 (2009).   DOI
20 L. Xu, J.W. McGraw, F. Gao, M. Grundy, Z. Ye, Z. Gu, and J. L. Shepherd, J. Phys. Chem. C, 117, 10730 (2013).   DOI
21 Z. Liu, J. Liu, L. Cui, R. Wang, X. Luo, C. J. Barrow, and W. Yang, Carbon, 51, 148 (2013).   DOI
22 S. Perumal, K. T. Park, H. M. Lee, and I. W. Cheong, J. Colloid Interface Sci., 464, 25 (2016).   DOI
23 S. Perumal, H. M. Lee, and I. W. Cheong, Carbon, 107, 74 (2016).   DOI
24 S. Perumal, H. M. Lee, and I. W. Cheong, J. Colloid Interface Sci., 497, 359 (2017).   DOI
25 H. M. Lee, S. Perumal, and I. W. Cheong, Polymers, 8, 101 (2016).   DOI
26 X. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. Wees, and B. L. Feringa, Chem. Comm., 46, 7539 (2010).   DOI
27 U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, Small, 6, 864 (2010).   DOI
28 J. S. Y. Chia, M. T. T. Tan, P. S. Khiew, J. K. Chin, H. Lee, D. C. S. Bien, and C. W. Siong, Chem. Eng. J., 249, 270 (2014).   DOI
29 A. O'neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, J. Phys. Chem. C, 115, 5422 (2011).   DOI
30 D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, J. Colloid Interface Sci., 430, 108 (2014).   DOI
31 J. Xu, D. K. Dang, V. T. Tran, X. Liu, J. S. Chung, S. H. Hur, W. M. Choi, E. J. Kim, and P. A. Kohl, J. Colloid Interface Sci., 418, 37 (2014).   DOI
32 A. F. Ahmad, F. H. A. Moin, H. M. K. Mohd, I. A. Rahman, F. Mohamed, C. C. Hua, S. Ramli, and S. Radiman, Malaysian J. Analytical Sci., 3, 475 (2013).
33 Y. Yan, L. Piao, S.-H. Kim, W. Li, and H. Zhou, RSC Adv., 5, 40199 (2015).   DOI
34 D. Parviz, S. Das, H.S. T. Ahmed, F. Irin, S. Bhattacharia, and M. J. Green, ACS Nano, 6, 8857 (2012).   DOI
35 J.-W. T. Seo, A. A. Green, A. L. Antaris, and M. C. Hersam, J. Phys. Chem, Lett., 2, 1004 (2011).   DOI
36 J. Liu, W. Yang, L. Tao, D. Li, C. Boyer, and T. P. Davis, J. Polym. Sci.: Part A: Polym. Chem., 48, 425 (2009).
37 K. T. Park, S. Perumal, H. M. Lee, Y. H. Kim, and I. W. Cheong, J. Adhesion and Interface, 18, 109 (2017).