DOI QR코드

DOI QR Code

Increase of CO2 Injection Ratio Using Surfactants Based on the Micromodel Experiment

마이크로모델 실험 기반 계면활성제를 활용한 이산화탄소 주입효율 향상

  • Seokgu, Gang (Department of Civil Engineering, Chungbuk National University) ;
  • Jongwon, Jung (Department of Civil Engineering, Chungbuk National University)
  • Received : 2022.11.08
  • Accepted : 2022.11.23
  • Published : 2022.12.01

Abstract

Carbon dioxide is one of the greenhouse gases in the atmosphere and much research is underperforming in reducing carbon dioxide. Geological carbon dioxide storage is considered the primary technique for global warming prevention. So, technic development for storing carbon dioxide is required. Using surfactant is considered an effective material for geological carbon dioxide storage. However, research on using surfactants for carbon dioxide sequestration is not enough. In this study, a 2D micromodel experiment depends on the surfactant type (sodium dodecyl sulfate and sodium dodecylbenzene sulfonate), concentration and carbon dioxide injection rate. As result, geological carbon dioxide sequestration efficiency is increased according to surfactant concentration and carbon dioxide injection rate increase. However, efficiency no more increases after critical concentration and rate.

대기 중 온난화 가스의 하나인 이산화탄소 감소를 위해 많은 연구들이 수행 중이다. 이 중 이산화탄소 지중저장은 지구온난화 방지를 위한 중요한 공법 중 하나로 주목받고 있다. 하지만, 제한된 공간의 최대한 많은 양의 이산화탄소 저장을 위한 기술의 개발이 필요한 실정이다. 계면활성제의 활용은 이산화탄소 지중저장 효율의 향상에 기여할 것으로 여겨지고 있으나, 이에 대한 연구는 부족한 실정이다. 본 연구에서는 이산화탄소 지중저장 효율 증진을 위해 계면활성제 종류(sodium dodecyl sulfate 및 sodium dodecylbenzene sulfonate) 및 농도, 이산화탄소 주입속도에 따른 2차원 마이크로모델 실험을 수행하였다. 그 결과, 계면활성제의 농도 및 이산화탄소 주입속도가 증가할수록, 이산화탄소 지중저장 효율이 증가함을 확인하였다. 하지만, 한계 농도 및 속도 이상에서는 더 이상 효율 증진이 발생하지 않는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구(No. 20212010200010)이며 이에 감사드립니다.

References

  1. Azam, M. R., Tan, I. M., Ismail, L., Mushtaq, M., Nadeem, M. and Sagir, M. (2013), Static adsorption of anionic surfactant onto crushed Berea sandstone, Journal of Petroleum Exploration and Production Technology, Vol. 3, No. 3, pp. 195-201. https://doi.org/10.1007/s13202-013-0057-y
  2. Benson, S. M. and Surles, T. (2006), Carbon dioxide capture and storage: an overview with emphasis on capture and storage in deep geological formations, Proceedings of the IEEE, Vol. 94, No. 10, pp. 1795-1805. https://doi.org/10.1109/JPROC.2006.883718
  3. Cao, S. C., Dai, S. and Jung, J. (2016), Supercritical CO 2 and brine displacement in geological carbon sequestration: micromodel and pore network simulation studies, International Journal of Greenhouse Gas Control, 44, pp. 104-114. https://doi.org/10.1016/j.ijggc.2015.11.026
  4. Dickson, J. L., Smith Jr, P. G., Dhanuka, V. V., Srinivasan, V., Stone, M. T., Rossky, P. J., Behles, J. A., Keiper, J. S., Xu, B., Johnson, C., DeSimone, J. M. and Johnston, K. P. (2005), Interfacial properties of fluorocarbon and hydrocarbon phosphate surfactants at the water-CO2 interface, Journal of American Chemical Society, 44, pp. 1370-1380.
  5. Gim, B.-M., Choi, T. S., Lee, J.-S., Park, Y.-G., Kang, S.-G. and Jeon, E.-C. (2013), Evaluation System of Environmental Safety on Marine Geological Sequestration of Captured Carbon Dioxide, Journal of the Korean Society for Marine Environment & Energy, Vol. 16, No. 1, pp. 42-52. https://doi.org/10.7846/JKOSMEE.2013.16.1.42
  6. GCCSI (2015), What is CCS?, Melbourne, Australia.
  7. Houbraken, I. M. (2018), The effect of formulation on the volatilisation of plant protection products, Ghent University, pp. 241.
  8. Intergovernmental Panel on Climate Change (2005), Carbon dioxide capture and storage, Cambridge, UK and New York, NY, USA, pp. 442.
  9. Intergovernmental Panel on Climate Change (2018), Global Warming of 1.5℃ : An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development and efforts to eradicate, Cambridge, UK and New York, NY, USA poverty, pp. 616.
  10. Jafari, M. and Jung, J. (2017), Direct measurement of static and dynamic contact angles using a random micromodel considering geological CO2 sequestration, Sustainability, Vol. 9, No. 12.
  11. Jafari, M. and Jung, J. (2019), Salinity effect on micro-scale contact angles using a 2D micromodel for geological carbon dioxide sequestration, Journal of Petroleum Science and Engineering, 178, pp. 152-161. https://doi.org/10.1016/j.petrol.2019.03.033
  12. Kim, S. and Santamarina, J. C. (2014), Engineered CO2 injection: The use of surfactants for enhanced sweep efficiency, International Journal of Greenhouse Gas Control, 20, pp. 324-332. https://doi.org/10.1016/j.ijggc.2013.11.018
  13. Kwon, L.-G. (2016), Review of CO2Storage Projects and Driving Strategy of CO2Storage Program in Korea, KEPCO Journal on Electric Power and Energy, Vol. 2, No. 2, pp. 167-185. https://doi.org/10.18770/KEPCO.2016.02.02.167
  14. Massarweh, O. and Abushaikha, A. S. (2020), The use of surfactants in enhanced oil recovery: A review of recent advances, Energy Reports, 6, pp. 3150-3178. https://doi.org/10.1016/j.egyr.2020.11.009
  15. Mohammed, I., Al Shehri, D., Mahmoud, M., Kamal, M. S. and Alade, O. S. (2021), A surface charge approach to investigating the influence of oil contacting clay minerals on wettability alteration, ACS Omega, Vol. 6, No. 19, pp. 12841-12852. https://doi.org/10.1021/acsomega.1c01221
  16. Negin, C., Ali, S. and Xie, Q. (2017), Most common surfactants employed in chemical enhanced oil recovery, Petroleum, Vol. 3, No. 2, pp. 197-211. https://doi.org/10.1016/j.petlm.2016.11.007
  17. Park, G., Kim, S.-O. and Wang, S. (2021), The effect of the surfactant on the migration and distribution of immiscible fluids in pore network, Economic and Environmental Geology, Vol. 54, No. 1, pp. 105-115. https://doi.org/10.9719/EEG.2021.54.1.105
  18. Ryou, J-E and Jung, J. (2022), Penetration behavior of biopolymer aqueous solutions considering rheological properties, Geomechanics and Engineering, Vol. 29, No. 3, pp. 259-267. https://doi.org/10.12989/GAE.2022.29.3.259
  19. Ryou, J.-E. and Jung, J. (2022), Characteristics of biopolymer guar gum solution injection for eco-friendly ground reinforcement, Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 1, pp. 201-207. https://doi.org/10.9798/KOSHAM.2022.22.1.201
  20. Tsouris, C., Aaron, D. S. and Williams, K. A. (2010), Is carbon capture and storage really needed?, Environmental Science & Technology, 44, pp. 4042-40445. https://doi.org/10.1021/es903626u
  21. United Nations Environment Programme (2021), Emission gas report 2021 : The heat is on - a world of climate promises not yet delivered, Nairobi, pp. 112.
  22. White, C. M., Smith, D. H., Jones, K. L., Goodman, A. L., Jikich, S. A., Lacount, R. B., Dubose, S. B., Ozdenurm E., Morsi, B. I. and Schroeder, K. T. (2005), Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-A review, Journal of American Chemical Society, Vol. 19, No. 3, pp. 659-724.
  23. Xie, X. and Economides, M. J. (2009), The impact of carbon geological sequestration, Society of Petroleum Engineers, SPE 120333, pp. 13.
  24. Zhong, L., Mayer, A. and Glass, R. J. (2001), Visualization of surfactant-enhanced nonaqueous phase liquid mobilization and solubilization in a two-dimensional micromodel, Water Resources Research, Vol. 37, No. 3, pp. 523-537. https://doi.org/10.1029/2000wr900300