• Title/Summary/Keyword: sulfide minerals

Search Result 145, Processing Time 0.027 seconds

Heavy Metal Retention by Secondary Minerals in Mine Waste Rocks at the Abandoned Seobo Mine (서보광산 폐광석 내 2차 광물에 의한 중금속 고정화)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.177-189
    • /
    • 2003
  • The main purposes of this study are to utilize mineralogical studies such as optical microscope, XRD and SEM/EDS analyses to characterize the oxidation of sulfide minerals and the mechanisms controlling the movement of dissolved metals from waste rocks at the abandoned Seobo mine. Mineralogical research of the waste rocks confirms the presence of anglesite, covellite, goethite, native sulfur and nsutite as secondary minerals, suggesting that these phases control the dissolved concentrations of As, Cu, Fe, Mn, Pb and Zn. The dissolved metals are precipitated, adsorbed and/or coprecipitated with(or within) Fe(Mn)-hydroxides and Mn(Fe)-hydroxides. The main phases of secondary mineral, Fe-hydroxide, can be classified as amorphous or poorly crystalline and more crystallized phases(e.g. goethite) by crystallinity. Amorphous or poorly crystalline Fe-hydroxide has relatively high As contents(9-24 wt.%). This poorly crystalline Fe-hydroxide changes toward more crystallized phase(e.g. goethite) which contains relatively low As(0.6-7.7 wt.%). These results are mainly due to the progressive release of As with the crystallization evolution of the As-trapping poorly crystalline Fe-hydroxides. It is also attributed to the differences of specific surface areas between the poorly crystalline Fe-hydroxides and well crystallized phases. The dissolved metals from waste rocks at Seobo mine area are naturally attenuated by a series of precipitation(as Fe, Mn, Cu, Pb), coprecipitation(Fe, Mn) and adsorption(As, Cu, Pb, An) reactions. The results of mineralogical researches permit to assess the environmental impacts of mine waste rocks in the areas, and can be used as a useful data to lay available mine restoration plan.

Geochemistry and Genetic Environments of the Daejang Vein Deposits (대장광상(大藏鑛床)의 지화학(地化學) 및 생성환경(生成環境) 연구(硏究))

  • Shin, Hong-Ja;Kim, Moon-Young;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 1987
  • The Daejang mine is one of the representatives of Cu-Pb-Zn-(Ag) vein deposit related genetically to late Cretaceous granitoid in Korea. Sericite from an alteration halo of the mine yielded a K-Ar date of $95{\pm}3.5Ma$. Based on macrostructures of vein filling, three major mineralization stages (I, II and III) are distinguished by tectonic breaks. Major ore constituents are arsenopyrite, pyrite, pyrrhotite, sphalerite, chalcopyrite, galena, boulangerite, with small amounts of Ag-bearing tetrahedrite, pyrargyrite, native bismuth, marcasite, siderite, ankerite, gudmundite and calcite. Characteristic feature of each mineralization stage and compositional variation of sphalerite and arsenopyrite are discussed in relation to the genetic environments. The FeS contents of sphalerites are 20.5~14.9 mole % in stage I, 17.9~11.9 mole % in stage IIA, 17.0~9.2 mole % in stage IIB, and 6.9~4.7 mole % in stage III. Their results are indicative of decreasing FeS contents during mineralization process in sphalerite coexisting with sulfur-rich sulfide assemblages, such as monoclinic pyrrhotite and pyrite, and is agreement with the conclusions shown by Scott and Kissin(1973). The composition of arsenopyrite decrease also in As content from stage I to stage III, and the compositional variation correlate with position of the associated minerals in the paragenesis. Temperature and pressure of the mineralization are determined as $250{\sim}430^{\circ}C$ and 4.0~0.3kb respectively, based on the chemistry of the minerals.

  • PDF

Hydrothermal Solution-Rhyolite Reaction and Origin of Sericitite in the Yukwang Mine (유문암-열수 반응과 유광 견운모 광상의 성인)

  • Park, Maeng-Eon;Choi, In-Sik;Kim, Jin-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.225-232
    • /
    • 1992
  • The hydrothermal alteration is evaluated using multicomponent equilibrium calculations with the program CHILLER for the reactions between hydrothermal water and rhyolite at the temperature of $300^{\circ}C$ and pressure of 500 bars. The chemical-reaction model on the depositional processes of the sericitite confirms that the hydrothermal water-rock interaction(hydrothermal alteration) is the main mechanism of the sericitite formation. The principal change in the aqueous phase during the reaction is the pH increase. Overall trends for the major species are the increase in total molalities of K, Ca, $SiO_2$, Al, Mg, Fe, Na, and sulfide in solid phase with hydrothermal water-rhyolite reaction and the decrease of them in aqeous solution by precipitation of hydrothermal products. Quartz and sericite are the first minerals to form. The sequence of minerals to precipitate following them is chlorite, epidote, pyrite and microcline as water/rock ratio decreases. Although calculated results cannot duplicate the complexities of natural hydrothermal alteration, the calculation provides thermodynamic constraints on the natural process. The calculation results resemble those of experimental studies. Sericitite forms where pH decreases and water/rock ratio increases.

  • PDF

Geologic Report of the Second Yeonhwa Mine, Kangwon Province, Korea (제이연화광산(第二蓮花鑛山)의 지질광상(地質鑛床)에 대(對)하여)

  • Han, Kab Soo
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.211-217
    • /
    • 1972
  • The Second Yeon Hwa Mine which belongs to a so called Lead-Zines Belt Area in the central east Korea is located at about 10 km northeast of the Seogpo railway station on Yeongdong Line. The exploitation of the mine started in June, 1969 and furnished the machinary ore dressing plant in November, 1971. The current monthly production of rude ore is 15,000 meteric tons. The results of the study on the lead-zinc-copper deposits of the Second Yeonhwa mine are summerized as follows: (1) main ore deposits of the mine are localized in the Pungchon Limestion formation of Cambrian age, (2) related ingneous rock with ore deposits is granite porphyry, which distributed in NS and $N50^{\circ}W$ trend, (3) ore solution ascended along the $N50^{\circ}W$ trend which represents folding axis and fault plane and mineralized selectively in the limestone formation. (4) high grade ore deposits are localized in concave and convex boundaries of granite porphyry, and hanging walls of shale bed ($P_2S$ shale bed) in Pungchon Limestone formation and (5) skarn minerals are consisted of garnet, hedenbergite, diopside, and sulfide minerals are composed of zincblenede, galena, phyrhotite, pyrite and some amount of chalcopyrite and arsenopyrite.

  • PDF

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

Formation and Behavior of Sedimentary Inorganic Sulfides in Banweol Intertidal Flat, Kyoung-gi Bay, West Coast of Korea (황해 경기만 반월조간대 퇴적물 내의 황화물 형성과 행동에 관한 연구)

  • 김범수;이창복
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.229-240
    • /
    • 1993
  • This study investigated the behaviour of sulfur species after the early diegenetic reduction of sulfate from pore solution in an anoxic intertidal flat deposit in the Banweol area of Kyeong-gi Bay, west coast of Korea. A total of seven sediment cores were collected during 1990∼1992 and were analyzed for their solid-phase sulfur species (acid-volatile sulfur, element sulfur, pyrite sulfur) as well as for chemical components in the pore solution, such as sulfate, ammonium, hydrogen sulfide, phosphate and Fe ion. The pore water sulfate oncentration was found to decrease rapidly downward from the sediment surface, while that of hydrogen sulfide, ammonium and phosphate showed and increase. The dissolved iron concentration in pore water, on the other hand, was found high in the surface layer of sediment, but fell sharply below this layer. these characteristic profiles of pore water sulfide and iron concentrations suggest that some reaction occurs between dissolved iron and sulfide ions, leading to the formation of various sulfide minerals in the sedimentary phase. The amount of inorganic sulfur species in the sediment increased downward, and showed a maximum of up to 7.9 mg/g. among the three species analyzed, acid-volatile sulfur (AVS) was dominant comprising more than 50% of the total. The amount of pyrite sulfur was greater than that of element sulfur. This implies that the formation of pyrite was restricted in this environment. the limited amount of element sulfur in this deposit may have discouraged the active formation of pyrite.

  • PDF

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution (중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향)

  • Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.465-475
    • /
    • 2022
  • The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

Fluid Inclusion and Stable Isotope Geochemistry of the Yugeum Hydrothermal Gold Deposit in Youngduk, Korea (영덕 유금 열수 금광상에 대한 유체포유물과 안정동위원소 연구)

  • Kim, Sang-Woo;Lee, In-Sung;Shin, Dong-Bok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • The Yugeum deposit in Youngduk in Gyungsangbuk-do is emplaced in the Cretaceous granitoids located in the Northeastem Gyeongsang Basin. Gold-bearing quartz veins filling the fracture with a direction of $N19^{\circ}{\sim}38^{\circ}W$ are most abundantly distributed within the Younghae granodiorite body. The formation of quartz veins can be classified into three main stages: barren quartz stage, auriferous quartz vein stage, and finally the extensive sulfide mineralization stage. Various sulfide minerals such as pyrite, chalcopyrite, galena, sphalerite, and arsenopyrite were precipitated during the hydrothermal gold mineralization process. Gold commonly occurs as fine-grained electrum in sulfides with high Au concentration (up to 93 wt%) compared to Ag. During the early gold mineralization stage, the temperature and pressure of the fluids are in the range of $220{\sim}250^{\circ}C$ and 730~1800 bar, and the oxygen fugacity is between $10^{-27}$ and $10^{-31.7}$ atm. On the other hand, the fluids of the late stage mineralization are characterized by temperature of $290{\sim}350^{\circ}C$ and pressure of 206~472 bar, and the oxygen fugacity is in the range of $10^{-26.3}{\sim}10^{-28.6}$ atm. The sulfur isotope compositions of sulfide minerals are in the range of $0.2{\sim}4.2^{\circ}/_{\circ\circ}$, while the ${\delta}^{34}SH_2S$ values range from 1.0 to $3.7^{\circ}/_{\circ\circ}$. The Ag/Au atomic ratios of electrum ranges from 0.15 to 1.10, and Au content is higher than Ag in most electrum. During the main gold mineralization stage at the relatively high temperature condition and with pH from 4.5 to 5.5, the stability of ${AuCl_2}^-$ increased while the stability of ${Au(HS)_2}^-$ decreased. Considering the pressure estimated in this deposit, the temperature of the ore fluid reached higher than $350^{\circ}C$ and ${AuCl_2}^-$ became an important species for the gold transportation. As mineralization proceeded with decreasing temperature and increasing pH and $f_{o2}$, the precipitation of sulfide minerals and accompanying electrum occurred.

Waste Recycling Through Biological Route (생물학적(生物學的) 방법(方法)에 의한 폐기물(廢棄物)의 재활용(再活用))

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Park, Kyung-Ho;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.3-15
    • /
    • 2008
  • Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.

Effect of Acid Drainage and Countermeasure about Road Cut Slope Environment (도로절개면 환경에 관한 산성배수의 영향과 대책)

  • 김진환;이종현;구호본;박미선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.481-484
    • /
    • 2003
  • Sulfide minerals contacted with air and water in coal seam cause oxidation reactions. This oxidation reactions make low pH of groundwater and surface water(Acid Drainage). The reddish brown precipitate collected from the cut slope of the study area was estimated using the X-Ray Diffractometer(XRD). XRD results show that the cut slope was affected by Acid Drainage. The cut slope exposured to Acid Drainage become weak about chemical weathering and defile the appearance of the road. Drainage facilities are very important in Cut Slope under Acid Drainage influence. Reactions between Coal seam and water cause chemical weathering and environmental problem. Therefore It is important to control the transfer paths of groundwater and surface water and to install water collecting facilities

  • PDF