Fluid Inclusion and Stable Isotope Geochemistry of the Yugeum Hydrothermal Gold Deposit in Youngduk, Korea

영덕 유금 열수 금광상에 대한 유체포유물과 안정동위원소 연구

  • Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, In-Sung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Shin, Dong-Bok (Department of Geoenvironmental Sciences, Kongju National University)
  • 김상우 (서울대학교 자연과학대학 지구환경과학부) ;
  • 이인성 (서울대학교 자연과학대학 지구환경과학부) ;
  • 신동복 (공주대학교 자연과학대학 지질환경과학과)
  • Received : 2009.09.15
  • Accepted : 2010.02.27
  • Published : 2010.03.31

Abstract

The Yugeum deposit in Youngduk in Gyungsangbuk-do is emplaced in the Cretaceous granitoids located in the Northeastem Gyeongsang Basin. Gold-bearing quartz veins filling the fracture with a direction of $N19^{\circ}{\sim}38^{\circ}W$ are most abundantly distributed within the Younghae granodiorite body. The formation of quartz veins can be classified into three main stages: barren quartz stage, auriferous quartz vein stage, and finally the extensive sulfide mineralization stage. Various sulfide minerals such as pyrite, chalcopyrite, galena, sphalerite, and arsenopyrite were precipitated during the hydrothermal gold mineralization process. Gold commonly occurs as fine-grained electrum in sulfides with high Au concentration (up to 93 wt%) compared to Ag. During the early gold mineralization stage, the temperature and pressure of the fluids are in the range of $220{\sim}250^{\circ}C$ and 730~1800 bar, and the oxygen fugacity is between $10^{-27}$ and $10^{-31.7}$ atm. On the other hand, the fluids of the late stage mineralization are characterized by temperature of $290{\sim}350^{\circ}C$ and pressure of 206~472 bar, and the oxygen fugacity is in the range of $10^{-26.3}{\sim}10^{-28.6}$ atm. The sulfur isotope compositions of sulfide minerals are in the range of $0.2{\sim}4.2^{\circ}/_{\circ\circ}$, while the ${\delta}^{34}SH_2S$ values range from 1.0 to $3.7^{\circ}/_{\circ\circ}$. The Ag/Au atomic ratios of electrum ranges from 0.15 to 1.10, and Au content is higher than Ag in most electrum. During the main gold mineralization stage at the relatively high temperature condition and with pH from 4.5 to 5.5, the stability of ${AuCl_2}^-$ increased while the stability of ${Au(HS)_2}^-$ decreased. Considering the pressure estimated in this deposit, the temperature of the ore fluid reached higher than $350^{\circ}C$ and ${AuCl_2}^-$ became an important species for the gold transportation. As mineralization proceeded with decreasing temperature and increasing pH and $f_{o2}$, the precipitation of sulfide minerals and accompanying electrum occurred.

경북 영덕의 유금광상은 경상분지 북동부 백악기 화강암체 내에 배태되어 있으며, 함금 열수석영맥은 모암인 영해 화강섬록암 내에 $N19^{\circ}{\sim}38^{\circ}W$ 주향의 단층대를 따라 충진되었다. 열수 유체의 유입은 크게 세 시기로 나누어 볼 수 있는데, 첫 번째 시기는 광화되지 않은 소량의 석영맥이 생성되었고, 두 번째 시기에는 다량의 금속원소와 이에 수반된 금을 함유한 유체가 유입되었으며, 세 번째 시기에는 다량의 황화광물이 침전되었다. 금 광화작용을 수반한 열수 유체는 황철석, 황동석, 방연석, 섬아연석, 그리고 유비철석 등의 다양한 황화광물들을 침전시켰으며, 에렉트럼 내 Au의 함량은 최대 92 wt%까지 매우 높은 편이다. 초기 금 광화작용 시기의 유체의 온도와 압력은 각각 $220{\sim}250^{\circ}C$와 730~1800 bar의 범위를 보이며, 이때 산소분압은 $10^{-27}{\sim}10^{-31.7}$ atm에 이른다. 반면, 광화 후기에서의 유체의 온도와 압력은 각각 $250{\sim}350^{\circ}C$와 206~472 bar의 범위를 보이며, 산소분압은 $10^{-26.3}{\sim}10^{-28.6}$ atm에 해당하고, 황화광물과 $H_2S$${\delta}^{34}S$ 값은 각각 $0.2{\sim}4.2^{\circ}/_{\circ\circ}$의 범위와 $1.0{\sim}3.7^{\circ}/_{\circ\circ}$범위를 보여준다. 유금광상에서 산출되는 에렉트럼은 0.15~1.10 범위의 Ag/Au 원자비를 보인다. 주광화작용이 진행되는 동안 비교적 높은 온도 조건과 4.5~5.5 의 pH 범위에서 광화유체 내에서 ${Au(HS)_2}^-$의 안정성을 감소되고, 상대적으로 ${AuCl_2}^-$ 의 안정성은 증가되었다. 압력조건을 고려 할 때 광화유체는 $350^{\circ}C$ 이상의 온도에 이르렀으며 용액 중 ${AuCl_2}^-$가 중요한 운반 수단이었을 것으로 생각된다. 광화작용이 진행되면서, 온도와 log $f_{o2}$의 감소가 일어남에 따라 ${AuCl_2}^-$의 용해도는 낮아지고 황화물들의 침전이 일어나며 이와 함께 에렉트럼도 침전하였을 것으로 생각된다.

Keywords

References

  1. Bowers, T.S., Jackson, K.J., and Helgeson, H.C. (1984) Equilibrium activity diagrams for coexisting minerals and aqueous solutions at pressures to 5 kb and 600 $^{\circ}C$. Springer, 397p.
  2. Brown P.E. and Lamb W.M. (1989) P-V-T properties of fluids in the system $H_2O{\pm}CO_2{pm}NaCl:$ New graphical presentations and implications for fluid inclusion studies. Geochim. Cosmochim. Acta, 53, 1290-1221.
  3. Chang, K.H., Lee, Y.D., Lee, Y.G., Seo, S.J., Oh, K.Y., and Lee, C.H. (1984) Unconformity at the Base of the Late Cretaceous Yucheon Group. Jour. Geol. Soc. Korea, 20, 41-50.
  4. Cheong, C.S. and Kwon, S.T. (1999) Sm-Nd mineral ages of Pre-Cretaceous granitic rocks in the Northern Gyeongsang Basin, Korea. Jour. Geol. Soc. Korea, 35, 159-166.
  5. Choi, S.-G. and Choi, S.H. (1995) Contrasting styles of gold and silver mineralization in the central and southeastern Korea. Econ. Environ. Geol., 28, 587-597.
  6. Choi, S.-G., Pak, S.J., Lee, P.-K., and Kim, C.S. (2004) An Overview of Geoenvironmental Implications of Mineral Deposits in Korea. Econ. Environ. Geol., 37, 1-19.
  7. Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S., and Pak, S.J. (2005) Origin of Mesozoic gold deposits in South Korea. Island Arc, 14, 102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  8. Eldridge, C.S., Barton, P.B., and Ohmoto, H. (1983) Mineral textures and their bearing on the formation of the Kuroko orebodies. In: Ohmoto, H. and Skinner, B.J. (Eds.), The Kuroko and related volcanogenic massive sulphide depositions. Econ. Geol. Mon., 5, 241-281.
  9. Hatae and Nobuhiro (1936) Geological map (1:50000), Younghae and Youngduk sheet (in Japanese).
  10. Heo, C.H., Yun, S.T., So, C.S., and Choi, S.G. (2001) Mesothermal gold vein mineralization of the Seolhwa mine: Fluid inclusion and Sulfur isotope studies. J. Geol. Soc. Korea., 22, 278-291.
  11. Heo, C.H., Yun, S.T., and So, C.S. (2002) Mesothermal gold mineralization in the Boseong-Jangheung area, Chollanamdo-province. Econ. Environ. Geol., 35, 379-393.
  12. Huston, D.L. and Large, R.R. (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geology Review, 4, 171-200. https://doi.org/10.1016/0169-1368(89)90017-6
  13. Hwang, J. and Park, H.I. (1996) Stable Isotope of the Nakcheon, Eunchi and Jungbong Gold-Silver Deposits in the Northern Taebagsn Mining District. Econ. Environ. Geol., 29, 159-170.
  14. Kim, O.J., Hong, M.S., Won, J.K., Park, H.I., Park, Y.D., and Kim, K.T. (1963) Geological map (1:50000), Pyeonghae sheet. Geological Survey of Korea, 1-17.
  15. Kim, O.J., Yun, S., and Gil, Y.J. (1968) Geological map (1:50000), Chungha sheet. Geological Survey of Korea, 1-16.
  16. Kim, S.J., Lee, H.K., Lee, C.H., and Itaya, T. (1999) K-Ar Ages and Geochemistry of Granitic Rocks in the Northeastern Gyeongsang Basin. Econ. Environ. Geol., 32, 141-150.
  17. KORES (2002) Annual report a detailed survey for metal deposits - Gold, Youngduk Area. Korea Resources Corporation, DS2002-MT. 50p.
  18. Lee, C.H. (1993) Geology, Mineralogy, Fluid inclusion and Stable Isotope of Gold, Silver and Antimony Ore Deposits of the Dunjeon – Baegjeon Area, Northern Taebaegsan Mining district, Korea. PhD. Seoul National University. Korea. 422p.
  19. Lee, J.Y. and Lee, J.G. (1992) Ageochemical Study on Trace elemts of the Onjong Granite in Relation to Mineralization, Pyeonghae Area. Jour. Korean. Inst. Mining Geol., 25, 245-258.
  20. Lee, Y.J., Kim, J.W., and Chung, W.W. (1993) Evolution trends of biotite and hornblende in granitic rocks from Yonghae-Yongdok Area. Northeastern Gyeongsang Basin, Korea. J. Korean. Inst. Mining Geol., 26, 349-361.
  21. Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol., 67, 551-578. https://doi.org/10.2113/gsecongeo.67.5.551
  22. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In: Barnes, H.L. (ed.), Geochemistry of Hydrothermal Ore Deposits (2nd ed.). John Wiley, New York, 509-567.
  23. Park, H.I., Chang, H.W., and Moon, H.S. (1994) Processes of formation of metallic and non-metalllic mineral deposits in the Gyeongsang Basin. KOSEF, 91-06-00-03,
  24. Pisutha-Arnond, V. and Ohmoto, H. (1983) Thermal history, and chemical and isotopic composition of the ore forming fluids responsible for the Kuroko massive sulphide deposits in the Hokuroko district in Japan. In Ohmoto, H. and Skinner, B.J. (Eds.), The Kuroko and related volcanogenic massive sulphide deposits. Econ. Geol. Mon., 5, 523-558.
  25. Roedder, E. (1984) Fluid inclusions. Rev. Mineralogy, 12, 644p.
  26. Schwartz, M.O. (1989) Determining phase volumes of mixed $CO_2-H_2O$ inclusion using microthermometric measurements. Mineral. Deposita, 24, 43-47.
  27. Shelton, K.L., So, C.S., and Chang, J.S. (1988) Goldrich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold mine area. Econ. Geol., 83, 1221-1237. https://doi.org/10.2113/gsecongeo.83.6.1221
  28. Shimazaki, H., Lee, M.S., Tsusue, A., and Kaneda, H. (1986) Three epochs of gold mineralization in South Korea. Mining Geology, 36, 265-272.
  29. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., 66, 653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  30. So, C.S. and Yun, S.T. (1997) Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea: constraints on hydrothermal fluid chemistry. Econ. Geol., 92, 60-80. https://doi.org/10.2113/gsecongeo.92.1.60
  31. Won, C.K., Kang, P.C., and Lee, S.H. (1978) Study on the Tectonic Interpretation and Igneous Plution in the Gyeongsang Basin. J. Geol. Soc. Korea, 14, 79-92.