Browse > Article

Waste Recycling Through Biological Route  

Pradhan, Debabrata (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
Kim, Dong-Jin (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
Ahn, Jong-Gwan (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
Park, Kyung-Ho (Minerals and Material Processing Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
Lee, Seoung-Won (Division of Nano Engineering, School of Engineering, Chungnam National University)
Publication Information
Resources Recycling / v.17, no.2, 2008 , pp. 3-15 More about this Journal
Abstract
Different toxic wastes are disposed of in our surroundings and these will ultimately threaten the existence of living organisms. Biohydrometallurgy, which includes the processes of bioleaching and bioremediation through the activities of microorganisms such as bacterial or fungal species, is a technology that has the potential to overcome many environmental problems at a reasonable economic cost. Bioleaching were carried out for dissolution of metals from different materials using most important metal mobilizing bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Laptospirillum ferrooxidans. According to the reaction, bioleaching is parted as direct and indirect mechanism. In direct mechanism the bacteria oxidize the sulphides minerals by accepting electron and producing sulphuric acid in leaching media for their growth and metabolism. In other hand the indirect bioleaching is demonstrated as the oxidation of sulphides mineral by the oxidant like $Fe^{3+}$ produced by the iron oxidizing bacteria. Through this process, substantial amount of metal can be recovered from low-grade ores, concentrates, industrial wastes like sludge, tailings, fly ash, slag, electronic scrap, spent batteries and spent catalysts. This may be alternative technology to solve the high deposition of waste, which moves toward a healthy environment and green world.
Keywords
Bioleaching; microorganisms; industrial waste; sulfide minerals; spent catalysts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.E. Torma, and K. Bosecker, 1982: Prog. Ind. Microbiol. 16, 77
2 P.R. Norris, N.P. Burton, and N.A.M. Foulis, 2000: Acidophiles in bioreactor mineral processing, Extremophiles. 4, 71-76   DOI
3 F. Habashi, 1978: Chalcopyrite: Its Chemistry and Metallurgy. McGraw-Hill, New York
4 P.R. Norris, 1990: Acidophilic bacteria and their activity in mineral sulfide oxidation. In: Ehrlich, H.L., Brierley, C.L. (Eds.), Microbial Mineral Recovery. McGraw-Hill, New York
5 K.A. Sanback, 1995: DOE Rep., PC/92119-T6
6 S.Y. Chen, and J.G. Lin, 2004: Bioleaching of heavy metals from contaminated sediment by indigenous sulfuroxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Water Res. 38, 3205-3214   DOI   ScienceOn
7 H.L. Ehrlich, 1992: Metal extraction and ore discovery. In: Lederberg J, editor. Encyclopedia of microbiology, San Diego: Academic Press. 3, 75-80
8 M.X. Liao, and T.L. Deng, 2004: Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Miner. Eng. 17, 17-22   DOI   ScienceOn
9 H. Seidel, C. Loser, A. Zehnsdorf, P. Hoffmann, and R. Schmerold, 2004: Bioremediation process for sediments contaminated by heavy metals: feasibility study on a pilot scale. Environ. Sci. Technol. 8, 1582-1588
10 K. Bosecker, 1997: Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev. 20, 591-604   DOI
11 O. Garcia Jr., J.M. Bigham, and O.H. Tuovinen, 1995: Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology. 41, 578-584   DOI
12 A. Ballester, F. Gonza'lez, M.L. Bla'zquez, and J.L. Mier, 1990: The influence of various ions in the bioleaching of metal sulfides. Hydrometallurgy. 23, 221-235   DOI   ScienceOn
13 A. Ballester, F. Gonza'lez, M.L. Bla'zquez, C. Go'mez, and J.L. Mier, 1992: The use of catalytic ions in bioleaching. Hydrometallurgy. 29, 145-160   DOI   ScienceOn
14 P.C. Banerjee, B.K. Chakrabarti, S. Bhattaacharyya, and A. Das, 1990: Silver-catalyzed hydro-metallurgical extraction of copper from sulfide ores from India mines. Hydrometallurgy. 25, 349-355   DOI   ScienceOn
15 D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, 2007: Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management (Article in Press)
16 L. Briand, H. Thomas, A. de la Vega Alonso, E. Donati, 1999: Vanadium recovery from solid catalysts by means of Thiobacilli action. In: Amils, R., Ballester, A. (Eds.), Proceedings of the International Biohydrometallurgy Symposium (IBS), Part A. Elsevier, Amsterdam. 263-271
17 M.R. Hoffmann, R.G. Arnold, and G. Stephanopoulos, 1989: US Patent 4880740
18 D. Santhiya, and Y.P. Ting, 2006: Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. Journal of Biotechnology. 121, 62-74   DOI   ScienceOn
19 C. Solisio, A. Lodi, and F. Veglio, 2002: Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Management. 22, 667-675   DOI   ScienceOn
20 Y.G. Liu, M. Zhou, G.M. Zeng, X. Li, W.H. Xu, and T. Fan, 2007: Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J. of Hazard. Mat. 141, 202-208   DOI   ScienceOn
21 M.Q. Qiu, S.Y. Xiong, W.M. Zhang, and G.X. Wang, 2005: A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 18, 987-990   DOI   ScienceOn
22 F. Schinner, and W. Burgstaller, 1989: Extraction of zinc from industrial waste by Penicillium sp. Appl. Environ. Microbiol. 55, 1153-1156
23 G. Bryan, B. Christopher, K. Hallberg, and B. Johnson, 2006: Mobilization of metals in mineral tailings at the abandoned São Domingos copper mine (Portugal) by indigenous acidophilic bacteria. Hydrometallurgy. 83, 184-194   DOI   ScienceOn
24 C. Demargasso, P. Galleguillos, L. Escudero, V. Zepeda, D. Castillo, E.O. Casamayor, 2003: Proceedings of the Copper 2003, 5th International Conference, Santiago, Chile. 6 (book 1), 131-140
25 H. Brandl, R. Bosshard, and M. Wegmann, 2001: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 59, 319-326   DOI   ScienceOn
26 J.W.C. Wong, L. Xiang, X.Y. Gu, and L.X. Zhou, 2004: Bioleaching of heavy metals from anaerobically digested sewage sludge using $FeS_2$ as an energy source. Chemosphere, 55, 101-107   DOI   ScienceOn
27 A. Seidel, Y. Zimmels, and R. Armon, 2001: Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem. Eng. J. 83, 123-130   DOI   ScienceOn
28 J.A. Brierley, and C.L. Brierley, 2001: Present and future commercial applications of biohydrometallurgy, Hydrometallurgy. 59, 233-239   DOI   ScienceOn
29 A.J. Parker, R.L. Paul, and G.P. Power, 1981: Electrochemistry of the oxidative leaching of copper from chalcopyrite. J. Electroanal. Chem. 118, 305-316   DOI
30 PP. Bosshard, R. Bachofen, and H. Brandl, 1996: Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci Technol. 30, 3066-3070   DOI   ScienceOn
31 K. Inai, 1994: Rev. Inst. France Petrol. 49(5), 521
32 G. Martino, 1994: Bull. Sot. Chim. Fr. 131, 444
33 A. Seidel, 1997: Mechanism of metals bioleaching from coal fly ash inconcentrated suspension by Thiobacillus thiooxidans bacteria. D.Sc.Thesis, The Technion, Haifa, Israel
34 S.S. Bang, S.S. Deshpande, and K.N. Han, 1995: The oxidation of galena using Thiobacillus ferrooxidans. Hydrometallurgy. 37, 181-192   DOI   ScienceOn
35 J.D. Miller, P.J. McDonough, and H.Q. Portillo, 1981: Electrochemistry in silver-catalyzed ferric sulfate leaching of chalcopyrite. In: Keaton, M.C. (Ed.), Process and Fundamental Consideration of Selected Hydrometallurgical Systems. SME-AIME, New York. 327-338
36 C. Loser, H. Seidel, P. Hoffmann, and A. Zehnsdorf, 2001: Remediation of heavy metal-contaminated sediments by solid-bed bioleaching. Environ. Geol. 40, 643-650   DOI
37 M.N. Collinet, and D. Morin, 1990: Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite arsenate ferrous and ferric iron. Antonie van Leeuwenhook. 57, 237-244   DOI
38 D.K. Ewart and M.N. Hughes, 1991: The extraction of metals from ores using bacteria, Adv. Inorg. Chem. 36, 103   DOI
39 S.M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, 2007: Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains. Hydrometallurgy. 85, 59-65   DOI   ScienceOn
40 H.Y. Wu, 2002: Bioleaching of heavy metals from MSW incineration fly ash by Aspergillus niger. Master Thesis. National University of Singapore (NUS)
41 M.P. Silverman, H.L. Ehrlich, 1964: Microbial formation and degradation of minerals.. In: Umbreit, Wayne W. (Ed.), Adv. Appl. Microbiol. 6, 153-206
42 N.M. Catherine, K. Mahtab, F.G. Bernard, 2004: Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J. Hazard. Mater. 110, 77-84   DOI   ScienceOn
43 K. Sakamoto, M. Yagasaki, K. Kirimura, and S. Usami, 1989: Resistance acquisition of Thiobacillus thiooxidans upon cadmium and zinc ion addition and formation of cadmium ion-binding and zinc ion-binding proteins exhibiting metallothionein-like properties. J. Ferment. Bioeng. 67, 266-273   DOI
44 A. Schippers, W. Sand, 1999: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and Sulfur, Appl. And Environ. Micribiol., 65(1), 319-321
45 P. Joffe, G.T. Sperl, 1993: DOE rep., PC-92119-T4.
46 R. Bosshard, 1998: Metallru¨ckgewinnung aus Elektronikschrott mit Hilfe von Bakterien. Diploma thesis, ETH Zurich, Switzerland
47 M. Nemati, STL. Harrison, GS. Hansford, and C. Wess, 1988: Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochem. Eng. J. 171-190
48 S.Y. Shi, and Z.H. Fang, 2005: Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor. Int. J. Miner. Process. 76, 3-12   DOI   ScienceOn
49 G.R. Chaudhury, and R.P. Das, 1987: Bacterial leaching complex sulfides of copper, lead and zinc. Int. J. Miner.Proces. 21, 57-64   DOI   ScienceOn
50 J.T. Staley, M.P. Bryant, N. Pfenning, and J.G. Holt (Eds.), 1989: Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, USA. 3, 1857
51 F.K. Crundwell, 1988: The influence of the electronic structure of solid on the anodic dissolution and leaching of semiconductor sulphide minerals. Hydrometallurgy. 21, 155-190   DOI   ScienceOn
52 J. Barrett, M.N. Hughes, G.I. Karavaiko and P.A. Spencer, 1993: Metal extraction by Bacterial Oxidation of Minerals, Ellis Horwood, Chichester
53 H. Deveci, A. Akcil, and I. Alp, 2004: Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy. 73, 293-303   DOI   ScienceOn
54 M.A. Faramarzi, M. Stagars, E. Pensini, W. Krebs, and H. Brandl, 2004: Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. Journal of Biotechnology. 113, 321-326   DOI   ScienceOn
55 E. Rawlings (Ed.), 1997: Biomining: Theory, Microbes and Industrial Processes,Heidelberg, R.G., Landes and Springer-Verlag, Austin
56 K.A. Sanback, P.M. Joffe, 1993: DOE Rep., PC-92119-T2 and T3
57 T. Gehrke, J. Telegdi, D. Thierry, and W. Sand, 1998: Importance of extracellular polymeric substances from Thiobacillus thiooxidans for bioleaching. Appl. Environ. Microbiol. 64, 2743-2747
58 T.J. Xu, and Y.P. Ting, 2004: Optimization on bioleaching of incinerator fly ash by Aspergillus niger - use of central composite design. Enzyme Microb. Technol. 35, 444-454   DOI   ScienceOn
59 A.D. Zunkel, 1997: Electric arc furnace dust management: a review of technologies. Iron and Steel Engineer. March, 33-38
60 W. Krebs, C. Brombacher, P.P. Bosshard, R. Bachofen, and H. Brandl, 1997: Microbial recovery of metals from solids. FEMS Microbiol Rev. 20, 605-617   DOI
61 A.W. Breed, G.S. Hansford, 1999: Studies on the mechanism and kinetics of bioleaching, Minerals Engineering, 12 (4), 383-392   DOI   ScienceOn
62 J.F. Blais, R.D. Tyagi, and J.C. Auclair, 1992: Bioleaching of metals from sewage sludge by sulfur-oxidizing bacteria. J. Environ. Eng. 118, 690-707   DOI
63 M.E. Escudero, F. Gonza'lez, M.L. Bla'zquez, A. Ballester, and C. Go'mez, 1993: The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy. 34, 151-169   DOI   ScienceOn
64 N.W. Zhu, L.H. Zhang, C.J. Li, and C.G. Cai, 2003: Recycling of spent nickel-cadmium batteries based on bioleaching process. Waste Management, 23, 703-708   DOI   ScienceOn
65 M. Paul, A. Sandstrom, and J. Paul, 2004: Prospects for cleaning ash in the acidic effluent from bioleaching of sulfidic concentrates. J. Hazard. Mater. 106B, 39-54
66 D. Santhiya, and Y.P. Ting, 2005: Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Journal of Biotechnology. 116, 171-184   DOI   ScienceOn
67 TT. Eighmy, Jr J.D. Eusden, JE. Krzanowski, DS. Domingo, D. Stampfli, and JR. Martin, 1995: Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 29, 629-646   DOI   ScienceOn
68 S.Y. Shi, Z.H. Fang, J.R. Ni, 2006: Comparative study on the bioleaching of zinc sulphides. Process Biochemistry, 41, 438-446   DOI   ScienceOn
69 R.F. Wilder, P.J. Barrett, L.W. Henslee, and D. Arpi, 1986: Recovery of metal Oxides from Fly Ash, EPRI CS-3544, Palo Alto, CA, USA, Vols. 1-3.
70 B.M. Goebel, E. Stackebrandt, F.G. Priest, A. Ramos- Cormenzana, B.J. Tindall, 1994: Bacterial Diversity and Systematics. FEMS Symposium, Plenum Press, New York. 131-273