Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.5.465

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution  

Choi, Sun Ki (Global Ocean Research Center, Korea Institute of Ocean Science & Technology)
Publication Information
Economic and Environmental Geology / v.55, no.5, 2022 , pp. 465-475 More about this Journal
Abstract
The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.
Keywords
mid-ocean ridge; volcanic arc; seafloor massive sulfide deposit; water-rock interaction; magmatic contribution;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, J., Lee, I., Halbach, P., Lee, K.Y., Ko, Y.T. and Kim, K.H. (2006) Formation of hydrothermal vents in the North Fiji Basin: sulfur and lead isotope constraints. Chem Geol., v.233, p.257-275. doi: 10.1016/j.chemgeo.2006.03.011   DOI
2 Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Jove Colon, C.F., Donval, J.P., Fouquet, Y., Prieur, D. and Appriou, P. (2002) The rainbow vent fluids (36°14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol., v.184, p.37-48. doi: 10.1016/S0009-2541(01)00351-5   DOI
3 Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J.L., Ondreas, H., Barriga, F.J.A.S., Cherkashov, G., Semkova, T., Poroshina, T., Bohn, M., Donval, J.P., Henry, K., Murphy, P. and Rouxel, O. (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Diversity of hydrothermal systems on slow spreading ocean ridges. Geophys. Monogr. Ser., v.188, p.321-367. doi: 10.1029/2008GM000746   DOI
4 Evans, G.N., Tivey, M.K., Monteleone, B., Shimizu, N., Seewald, J.S. and Rouxel, O.J. (2020) Trace element proxies of seafloor hydrothermal fluids based on secondary ion mass spectrometry (SIMS) of black smoker chimney linings. Geochim. Cosmochim. Acta, v.269, p.346-375. doi: 10.1016/j.gca.2019.09.038   DOI
5 de Ronde, C.E.J., Humphris, S.E., Hofig, T.W. and Reyes, A.G. (2019) Critical role of caldera collapse in the formation of seafloor mineralization: the case of Brothers volcano. Geology, v.47, p.762-766. doi: 10.1130/G46047.1   DOI
6 Herzig, P.M., Hannington, M.D., Fouquet, Y., von Stackelberg, U. and Petersen, S. (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ. Geol., v.88, p.2182-2209. doi: 10.2113/gsecongeo.88.8.2182   DOI
7 Keith, M., Haase, K.M., Schwarz-Schampera, U., Klemd, R., Petersen, S. and Bach, W. (2014) Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, v.42, p.699-702. doi: 10.1130/G35655.1   DOI
8 McCaig, A.M., Cliff, R.A., Escartin, J., Fallick, A.E. and MacLeod, C.J. (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology, v.35(10), p. 935-938. doi: doi.org/10.1130/G23657A.1   DOI
9 Keith, M., Smith, D.J., Jenkin, G.R.T., Holwell, D.A. and Dye, M.D. (2018b) A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes. Ore Geol. Rev., v.96, p.269-282. doi: 10.1016/j.oregeorev.2017.07.023   DOI
10 Knight, D.R., Roberts, S. and Webber, A.P. (2018) The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges. Miner. Depos., v.53, p.143-152. doi: 10.1007/s00126-017-0762-4   DOI
11 Resing, J.A., Lebon, G., Baker, E.T., Lupton, J.E., Embley, R.W., Massoth, G.J., Chadwick, W.W. and de Ronde, C.E.J. (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Econ. Geol., v.102, p.1047-1061. doi: 10.2113/gsecongeo.102.6.1047   DOI
12 Beaulieu, S.E., Baker, E.T. and German, C.R. (2015) 'Where are the undiscovered hydrothermal vents on oceanic spreading ridges?', Deep-Sea Research Part II: Topical Studies in Oceanography, v.121, p.202-212. doi: 10.1016/j.dsr2.2015.05.001   DOI
13 Berkenbosch, H.A., de Ronde C.E.J., Gemmell, J.B., McNeill, A.W. and Goemann, K. (2012) Mineralogy and formation of black smoker chimneys from Brothers submarine Volcano, Kermadec arc. Econ. Geol., v.107, p.1613-1633. doi: 10.2113/econgeo.107.8.1613   DOI
14 Melekestseva, I.Y., Maslennikov, V.V., Tret'yakov, G.A., Nimis, P., Beltenev, V.E., Rozhdestvenskaya, I.I., Maslennikova, S.P., Belogub, E.V., Danyushevsky, L., Large, R., Yuminov, A.M. and Sadykov, S.A. (2017) Goldand silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13'N, Mid-Atlantic Ridge: a case of magmatic contribution? Econ. Geol., v.112, p.741-773. doi: 10.2113/econgeo.112.4.741   DOI
15 Choi, S.K., Pak, S.J., Kim, J., Park, J.W. and Son, S.K. (2021a) Gold and tin mineralisation in the ultramafic-hosted Cheoeum vent field, Central Indian Ridge. Miner. Depos., v.56, p.885-906. doi: 10.1007/s00126-020-01012-5   DOI
16 Schmidt, K., Garbe-Schonberg, D., Koschinsky, A., Strauss, H., Jost, C.L., Klevenz, V. and Koniger, P. (2011) Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18'S, Mid-Atlantic Ridge): constraints on fluid- rock interaction in heterogeneous lithosphere. Chem. Geol., v.280, p.1-18. doi: 10.1016/j.chemgeo.2010.07.008   DOI
17 Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. doi: 10.2113/gsecongeo.66.4.653   DOI
18 Butterfield, D.A., Nakamura, K., Takano, B., Lilley, M.D., Lupton, J.E., Resing, J.A. and Roe, K.K. (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology, v.39, p.803-806. doi: 10.1130/G31901.1   DOI
19 Choi, S.K., Pak, S.J., Park, J.W., Kim, J. and Son, S.K. (2021b). Geochemical Variability of Pyrite, Sphalerite, and Chalcopyrite from Submarine Hydrothermal Vents. Abstract presented at the KSEEG Annual Conference, 167p.
20 Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta, v.73, p.4761-4791. doi: 10.1016/j.gca.2009.05.045   DOI
21 Stoffers, P., Worthington, T.J., Schwarz-Schampera, U., Hannington, M.D., Massoth, G.J., Hekinian, R., Schmidt, M., Lundsten, L.J., Evans, L.J., Vaiomo'unga, R. and Kerby, T. (2006) Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific. Geology, v.34, p.453-456. doi: 10.1130/G22227.1   DOI
22 Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S. and Vorster, C. (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an insitu LAICP-MS study. Geochim. Cosmochim. Acta, v.159, p.16-41. doi: 10.1016/j.gca.2015.03.020   DOI
23 Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T.H. (1979) Submarine Thermal Springs on the Galapagos Rift. Science, v.203, p.1073-1083. doi: 10.1126/science.203.4385.1073   DOI
24 Keith, M., Haase, K.M., Klemd, R., Smith, D.J., SchwarzSchampera, U. and Bach, W. (2018a) Constraints on the source of Cu in a submarine magmatic hydrothermal system, Brothers volcano, Kermadec island arc. Contrib. Mineral. Petrol., v.173, p.40. doi: 10.1007/s00410-018-1470-5   DOI
25 Martin, A.J., Keith, M., Parvaz, D.B., McDonald, I., Boyce, A.J., McFall, K.A., Jenkin, G.R.T., Strauss, H. and MacLeod, C.J. (2020) Effects of magmatic volatile influx in mafic VMS hydrothermal systems: Evidence from the Troodos ophiolite, Cyprus. Chem. Geol., v.531, p.119325. doi: 10.1016/j.chemgeo.2019.119325   DOI
26 Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V. (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol., v.104, p.1111-1141. doi: 10.2113/gsecongeo.104.8.1111   DOI
27 Tao, C., Seyfried, W.E., Lowell, R.P., Liu, Y., Liang, J., Guo, Z., Ding, K., Zhang, H., Liu, J., Qiu, L., Egorov, I., Liao, S., Zhao, M., Zhou, J., Deng, X., Li, H., Wang, H., Cai, W., Zhang, G., Zhou, H., Lin, J. and Li, W. (2020) Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun., v.11(1), p. 1-9. doi: 10.1038/s41467-020-15062-w   DOI
28 Toffolo, L., Nimis, P., Tret'yakov, G.A., Melekestseva, I.Y. and Beltenev, V.E. (2020) Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis. Earth. Sci. Rev., v.201, p.102958. doi: 10.1016/j.earscirev.2019.102958   DOI
29 Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Li, Huaiming, Li, Honglin, Wu, Z. and Cui, R. (2017) Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol. Rev., v.84, p.1-19. doi: 10.1016/j.oregeorev.2016.12.020   DOI
30 Wu, Z., Sun, X., Xu, H., Konishi, H., Wang, Y., Wang, C., Dai, Y., Deng, X. and Yu, M. (2016) Occurrences and distribution of "invisible" precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge. Ore Geol. Rev., v.79, p.105-132. doi: 10.1016/j.oregeorev.2016.05.006   DOI
31 Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta, v.69, p.2781-2796. doi: 10.1016/j.gca.2005.01.011   DOI
32 Nestmeyer, M., Keith, M., Haase, K.M., Klemd, R., Voudouris, P., Schwarz-Schampera, U., Strauss, H., Kati, M. and Magganas, A. (2021) Trace Element Signatures in Pyrite and Marcasite From Shallow Marine Island Arc-Related Hydrothermal Vents, Calypso Vents, New Zealand, and Paleochori Bay, Greece. Front. Earth Sci., v.9, p.1-18. doi: 10.3389/feart.2021.641654   DOI
33 Patten, C.G.C., Pitcairn, I.K., Teagle, D.A.H. and Harris, M. (2016) Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits. Miner. Depos., v.51(2), p.170-200. doi:10.1007/s00126-015-0598-8   DOI
34 Patten, C.G.C., Pitcairn, I.K., Alt, J.C., Zack, T., Lahaye, Y., Teagle, D.A.H. and Markdahl, K. (2020) Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc. Miner. Depos., v.55, p.469-489. doi: 10.1007/s00126-019-00900-9   DOI
35 Yeats, C.J., Parr, J.M., Binns, R.A., Gemmell, J.B. and Scott, S.D. (2014) The Susu Knolls hydrothermal field, Eastern Manus Basin, Papua New Guinea: an active submarine high-sulfidation copper-gold system. Econ. Geol., v.109, p.2207-2226. doi: 10.2113/econgeo.109.8.2207   DOI
36 Melekestseva, I.Y., Tret'yakov, G.A., Nimis, P., Yuminov, A.M., Maslennikov, V.V., Maslennikova, S.P., Kotlyarov, V.A., Beltenev, V.E., Danyushevsky, L.V. and Large, R. (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87' N): evidence for phase separation and magmatic input. Marine. Geol., v.349, p.37-54. doi: 10.1016/j.margeo.2013.12.013   DOI
37 Tivey, M. (2007) Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits. Oceanography, v.20(1), p.50-65. doi: 10.5670/oceanog.2007.80   DOI
38 Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Cai, Y. and Zhou, P. (2018) Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals, v.8, p.526. doi: 10.3390/min8110526   DOI
39 Choi, S.K., Lee, K.-Y., Pak, S.J., Choi, S.-H. and Lee, I.-K. (2015) Mineralogical and Fluid Inclusion Study on Seafloor Hydrothermal Vents at TA25 Subsea Caldera in Tongan Waters. Econ. Environ. Geol., v.48, p.273-285. doi: 10.9719/EEG.2015.48.4.273   DOI
40 Nakamura, K., Morishita, T., Bach, W., Klein, F., Hara, K., Okino, K., Takai, K. and Kumagai, H. (2009) Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth Planet. Sci. Lett., v.280, p.128-136. doi: 10.1016/j.epsl.2009.01.024   DOI
41 Choi, S.K., Pak, S.J., Park, J.W., Kim, H.S., Kim, J. and Choi, S.H. (2022) Trace-element distribution and ore-forming processes in Au-Ag-rich hydrothermal chimneys and mounds in the TA25 West vent field of the Tonga Arc. Miner. Depos., p.1-26. https://doi.org/10.1007/s00126-022-01136-w   DOI
42 de Ronde, C.E.J., Massoth, G.J., Butterfield, D.A., Christenson, B.W., Ishibashi, J., Ditchburn, R.G., Hannington, M.D., Brathwaite, R.L., Lupton, J.E., Kamenetsky, V.S., Graham, I.J., Zellmer, G.F., Dziak, R.P., Embley, R.W., Dekov, V.M., Munnik, F., Lahr, J., Evans, L.J. and Takai, K. (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner. Depos., v.46, p.541-584. doi: 10.1007/s00126-011-0345-8   DOI
43 Escartin, J., Smith, D.K., Cann, J., Schouten, H., Langmuir, C.H. and Escrig, S. (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, v.455(7214), p.790-794. doi: 10.1038/nature07333   DOI
44 Falkenberg, J.J., Keith, M., Haase, K.M., Bach, W., Klemd, R., Strauss, H., Yeo, I.A., Rubin, K.H., Storch, B. and Anderson, M.O. (2021) Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems. Geochim. Cosmochim. Acta, v.307, p.105-132. doi: 10.1016/j.gca.2021.05.047   DOI
45 Fox, S., Katzir, Y., Bach, W., Schlicht, L. and Glessner, J. (2020) Magmatic volatiles episodically flush oceanic hydrothermal systems as recorded by zoned epidote. Commun. Earth Environ., v.1, p.1-9. doi: 10.1038/s43247-020-00051-0   DOI
46 Hannington, M., Jamieson, J., Monecke, T., Petersen, S. and Beaulieu, S. (2011) The abundance of seafloor massive sulfide deposits. Geology, v.39, p.1155-1158. doi: 10.1130/G32468.1   DOI
47 Meng, X., Li, X., Chu, F., Zhu, J., Lei, J., Li, Z., Wang, H., Chen, L. and Zhu, Z. (2020) Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1-2°S). Ore Geol. Rev., v.116, p.103209. doi: 10.1016/j.oregeorev.2019.103209   DOI
48 Monecke, T., Petersen, S. and Hannington, M.D. (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings. Econ. Geol., v.109, p.2079-2101. doi: 10.2113/econgeo.109.8.2079   DOI
49 Grundler, P.V., Brugger, J., Etschmann, B.E., Helm, L., Liu, W., Spry, P.G., Tian, Y., Testemale, D. and Pring, A. (2013) Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim. Cosmochim. Acta, v.120, p.298-325. doi: 10.1016/j.gca.2013.06.009   DOI
50 Hannington, M.D., De Ronde, C.E.J. and Petersen, S. (2005) 'SeaFloor Tectonics and Submarine Hydrothermal Systems', in One Hundredth Anniversary Volume. Society of Economic Geologists, p.111-141. doi: 10.5382/AV100.06.   DOI
51 Haymon, R.M. (1983) Growth history of hydrothermal black smoker. Nature, v.301, p.695-698. doi: 10.1038/301695a0   DOI
52 Ishibashi, J. ichiro, Tsunogai, U., Toki, T., Ebina, N., Gamo, T., Sano, Y., Masuda, H. and Chiba, H. (2015). Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin. Deep. Res. Part II Top. Stud. Oceanogr., v.121, p.126-136. doi: 10.1016/j.dsr2.2015.06.003   DOI
53 Kawasumi, S. and Chiba, H. (2017) Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chem. Geol., v.451, p.25-37. doi: 10.1016/j.chemgeo.2017.01.001   DOI
54 Keith, M., Hackel, F., Haase, K.M., Schwarz-Schampera, U. and Klemd, R. (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev., v.72, p.728-745. doi: 10.1016/j.oregeorev.2015.07.012   DOI
55 Kim, J., Lee, I. and Lee, K.Y. (2004) S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. J. Geophys. Res., v.109, p. B12210. doi: 10.1029/2003JB002912   DOI