• 제목/요약/키워드: sulfate reduction

검색결과 363건 처리시간 0.024초

전자공여체와 황산염 이용 토착미생물에 의한 침철석(α-FeOOH) 환원 연구 (Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate)

  • 권만재;양중석;심무준;이승학
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권1호
    • /
    • pp.54-62
    • /
    • 2014
  • To better understand dissimilatory iron and sulfate reduction (DIR and DSR) by subsurface microorganisms, we investigated the effects of sulfate and electron donors on the microbial goethite (${\alpha}$-FeOOH) reduction. Batch systems were created 1) with acetate or glucose (donor), 2) with goethite and sulfate (acceptor), and 3) with aquifer sediment (microbial source). With 0.2 mM sulfate, goethite reduction coupled with acetate oxidation was limited. However, with 10 mM sulfate, 8 mM goethite reduction occurred with complete sulfate reduction and x-ray absorption fine-structure analysis indicated the formation of iron sulfide. This suggests that goethite reduction was due to the sulfide species produced by DSR bacteria rather than direct microbial reaction by DIR bacteria. Both acetate and glucose promoted goethite reduction. The rate of goethite reduction was faster with glucose, while the extent of goethite reduction was higher with acetate. Sulfate reduction (10 mM) occurred only with acetate. The results suggest that glucose-fermenting bacteria rapidly stimulated goethite reduction, but acetate-oxidizing DSR bacteria reduced goethite indirectly by producing sulfides. This study suggests that the availability of specific electron donor and sulfate significantly influence microbial community activities as well as goethite transformation, which should be considered for the bioremediation of contaminated environments.

Relationships between Methane Production and Sulfate Reduction in Reclaimed Rice Field Soils

  • Lee, Ju-Hwan;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • 제8권4호
    • /
    • pp.281-288
    • /
    • 2004
  • The change in relationships between methane production and sulfate reduction was investigated in reclaimed rice field soils at different time points after reclamation of tidal flat in Korea. Sulfate concentrations of soils in the ca. 60-year-old and 26-year-old reclaimed rice fields were much lower than that in a natural tidal flat. During 60 d of anaerobic incubation, total methane production and sulfate consumption of the soil slurries were 7.0 ${\mu}$mol $CH_4$/g and 8.2 ${\mu}$mol $SO_4^{2-}$/g in the 60-year-old rice field, 5.6 ${\mu}$mol $CH_4$/g and 12.7 mmol $SO_4^{2-}$/g in the 26-year-old rice field, and ca. 0 mmol $CH_4$/g and 22.4 ${\mu}$mol $SO_4^{2-}$/g in a natural tidal flat. Relative percent electron flow through sulfate reduction in the 60-year-old rice field was much lower (50.8%) compared with the 26-year-old rice field (69.3%) and the tidal flat (99.9%). The addition of an inhibitor of methanogenesis (2-bromoethanesulfonate) had no effect on sulfate reduction in the soil slurries of the reclaimed rice fields. However, instant stimulation of methane production was achieved with addition of an inhibitor of sulfate reduction (molybdate) in the soil slurries from the 26-year-old reclaimed rice field. The specific inhibitor experiments suggest that the relationship of methanogenesis and sulfate reduction might become mutually exclusive or syntrophic depending on sulfate content in the soil after reclamation. Sulfate, thus sulfate reduction activity of sulfate-reducing bacteria, would be an important environmental factor that inhibits methane production and determines the major pathway of electron and carbon flow in anaerobic carbon mineralization of reclaimed rice field soils.

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$

  • Nevatalo, Laura M.;Bijmans, Martijn F. M.;Lens, Piet N. L.;Kaksonen, Anna H.;Puhakka, Jaakko A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.615-621
    • /
    • 2010
  • The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$. Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$, and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$, respectively. In the GLB experiment at $9^{\circ}C$, a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$, corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$, was obtained. The electron flow from the consumed $H_2$-gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.

Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses

  • Bijmans, Martijn F. M.;Dopson, Mark;Peeters, Tom W. T.;Lens, Piet N. L.;Buisman, Cees J. N.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.698-708
    • /
    • 2009
  • High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper investigates sulfate reduction in a membrane bioreactor at a controlled pH of 5. Sulfate and formate were dosed using a pH-auxostat system while formate was converted into hydrogen, which was used for sulfate reduction. Sulfide was removed from the gas phase to prevent sulfide inhibition. This study shows a high-rate sulfate-reducing bioreactor system for the frrst time at pH 5, with a volumetric activity of 188 mmol $SO_4^{2-}$/I/d and a specific activity of 81 mmol $SO_4^{2-}$volatile suspended solids/d. The microbial community at the end of the reactor run consisted of a diverse mixed population including sulfate-reducing bacteria.

황산염 환원반응이 탈염소화, 메탄생성 및 황산염 환원 간 수소경쟁에 미치는 영향 (Effect of Sulfate Reduction on the Hydrogen Competition among Dechlorination, Methane Production, and Sulfate Reduction)

  • 이일수;배재호
    • 대한환경공학회지
    • /
    • 제27권6호
    • /
    • pp.635-641
    • /
    • 2005
  • 황산염 환원 반응이 혐기성 조건 하에서 수소에 대하여 경쟁관계에 있는 메탄생성 및 환원성 탈염소화 반응에 미치는 영향을 평가하기 위한 회분식 실험을 수행하였다. 황산염 환원반응은 수소문턱농도가 2 nM로 탈염소화 반응과 유사하여 낮은 수소 농도에서 탈염소화를 저해하였으며 메탄생성균이 cDCE의 탈염소화를 저해시키는 것과는 달리 PCE의 cDCE 변환 과정부터 탈염소화를 억제하였다. 또한 황산염은 메탄생성을 억제하여 메탄생성균이 수소경쟁에서 제외되었는 바, 이는 메탄생성의 수소문턱농도(10 nM)가 상대적으로 높기 때문이다. 황산염이 존재하는 경우 탈염소화 효율은 식종 미생물의 농도에 큰 영향을 받지 않았는 바, 이는 식종 미생물 증가에 의해 탈염소화뿐만 아니라 황산염 환원반응도 동시에 촉진되었기 때문이다.

황산염환원균을 이용한 폐광폐수의 중금속 제거 (Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria)

  • 백병천;김광복
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

논과 갯벌에서 톨루엔의 혐기성 생분해에 미치는 전자수용체의 영향 (Effect of Electron Acceptor on Anaerobic Toluene Biodegradation in Rice Field and Tidal Mud Flat)

  • 조경숙
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.197-200
    • /
    • 2003
  • In oil-contaminated environments, anaerobic biodegradation of toluene depended on the concentration and distribution of terminal electron acceptor as well as the physicochemical properties such as DO concentration, redox potential and pH. This study showed the anaerobic biodegradation of toluene in two different soils by using nitrate reduction, ferric iron reduction, sulfate reduction and methanogensis. Toluene degradation rates in the soil samples taken from rice filed and tidal mud flat by nitrate reduction were higher than those by other processes. Tho soil samples from the two fields were enriched for 130 days by providing toluene as a sole carbon source and nitrate or sulfate as a terminal electron acceptor. The toluene degradation rates in the enriched denitrifying consortia obtained from the rice field and tidal mud flat soil were 310.7 and 200.6 $\mu$mol$ L^{-1}$ / $d^{-1}$, respectively. The toluene (legradation rates in the enriched sulfate-reducing consortia from the fields ranged fi-om 149.1 to 86.1$\mu$mol $L^{-1}$ / $d^{-1}$ .

황산동 수용액으로부터 hydrazine 환원에 의한 Cu 미립자의 합성 (Synthesis of Uniform Cu Particles by Hydrazine Reduction from Copper Sulfate Solution)

  • 유연태;최영윤
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.524-530
    • /
    • 2003
  • In order to prepare the uniform copper particles from copper sulfate solution by using hydrazine as a reduction agents, the reduction behavior of copper particles from copper sulfate was investigated in detail at room temperature by the observation of reaction products. The effects of $NH_4$OH and $Na_4$$P_2$$O_{7}$ on the formation of uniform copper particles were discussed. ($NHCu_3$)$_4$$SO_4$was completely formed at over pH 11 by adding $NH_4$OH in copper sulfate solution. The fine $Cu_2$O with the particle size of 50 nm was produced in the initial reduction process of (NH$Cu_3$)$_4$$SO_4$solution with $Na_4$$P_2$$O_{ 7}$ and then the Cu$_2$O was converted into copper particles by inserting additional hydrazine. When Cu(NH$_3$)$_4$SO$_4$solution with $Na_4$$P_2$$O_{ 7}$ was reduced at $80^{\circ}C$ by hydrazine, the highly dispersed copper particles with the particle size of about 0.8 $\mu\textrm{m}$ was obtained.

산화촉매에 의한 소형디젤엔진의 배출가스 저감특성 (Characteristics of Exhaust Emissions Reduction by Oxidation Catalyst for Light-duty Diesel Engine)

  • 김선문;임철수;엄명도;정일래
    • 한국대기환경학회지
    • /
    • 제18권5호
    • /
    • pp.411-417
    • /
    • 2002
  • The purpose of this study is to evaluate the emission reduction characteristics depending on the formation of the catalyst which influences the development of the diesel oxidation catalyst (DOC) suitable for small-sized diesel engines. We also attempted to suggest the feasibility of it as an after-treatment device. The reduction efficiency of DOC for CO and HC was proportional to the contents of precious metals, and the particulate matter (PM) has been reduced as much as 53∼59%. The reduction rate of soluble organic fraction (SOF) by DOC attachment revealed 100%. The composition of sulfate in PM increased from 3%, 7∼11% by installation of DOC. It is described that increase of sulfate contributed to the production of PM. This result also showed that the SOF and sulfate have trade-off relationship.

해양퇴적물내에서의 황산염 환원과 황의 안정동위원소 분화 (Sulfate reduction and sulfur isotopic fractionation in marine sediments)

  • 한명우
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.43-49
    • /
    • 1993
  • 두개의 서로 다른 해양환경에서 수거된 토적물의 공극수로부터 황산염 농도와 황산염의 황 안정 동위원고값$({\delta}^{34}SO_4_){pw}$이 측정되었다. 한지역은 북동태평양 심해(ST-1)이었고, 다른 한 지역은 황해 경기만의 연안역(ST-2)이었다. 두 개의 시추 코아 공히 공극수 황산염의 농도가 김이세 따라 감소하는 것을 보였는데, 이것은 황산염 환원작용이 두 지역 퇴적환경에서 모두 일어나고 있음을 시사한다. 정점 ST-2에서 공극수 황산염의 감소가 더욱 현저한 것은 이곳에서 환산염 환원이 더욱 빠르게 일어나고 있음을 나타내는 것이며, 이것은 심해환경에 비해 연안환경에서 퇴적속도가 훨씬 빠르다는 사실을 고려할 때 예측된 결과이다. 공극수 황산염의 황 안정동위원소 측정값 $({\delta}^{34}SO_4_){pw}$ 들은 Rayleigh 동위원소 분화방정식이 예측한 값들과 매울 잘 일치하고 있다. 측정갑들은 정점 ST-2에서 26.7%~61.3%의 범위를 보이는데 이것은32.4%~97.8%의 분포를 보인 정점 ST-1에 비하면 적은 값들이다. 정점 ST-2에서 공극수 황산염의 농도변화가 훨씬 더 컷음에도 불구하고 동위원소값들은 적은 규모로 증가하였다. 황산염 농도변화와 동위원소값의 변화 사잉에 이와같은 역비례 관계는 다음과 같은 두가지 연속적인 요일들에 의해 설명될 수 있다. 황산염 환원이 진행됨에 따라 공극수에 남아있는 황산염내 황에는 무거운 $^{34}S$가 점차 농축되는 반응효과가 첫째 요인이며, 이러한 반응효과가 커지면 커질수록 최종값인 $({\delta}^{34}SO_4_){pw}$ 는 오히려 줄어들게 하는 Rayleigh 방정식 자체의 구조효과가 둘째 요인이다.

  • PDF