Browse > Article
http://dx.doi.org/10.4014/jmb.0809.502

Sulfate Reduction at pH 5 in a High-Rate Membrane Bioreactor: Reactor Performance and Microbial Community Analyses  

Bijmans, Martijn F. M. (Sub Department of Environmental Technology, Wageningen University and Research Centre)
Dopson, Mark (Department of Molecular Biology, Umea University)
Peeters, Tom W. T. (Sub Department of Environmental Technology, Wageningen University and Research Centre)
Lens, Piet N. L. (Sub Department of Environmental Technology, Wageningen University and Research Centre)
Buisman, Cees J. N. (Sub Department of Environmental Technology, Wageningen University and Research Centre)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.7, 2009 , pp. 698-708 More about this Journal
Abstract
High rate sulfate reduction under acidic conditions opens possibilities for new process flow sheets that allow the selective recovery of metals from mining and metallurgical waste and process water. However, knowledge about high-rate sulfate reduction under acidic conditions is limited. This paper investigates sulfate reduction in a membrane bioreactor at a controlled pH of 5. Sulfate and formate were dosed using a pH-auxostat system while formate was converted into hydrogen, which was used for sulfate reduction. Sulfide was removed from the gas phase to prevent sulfide inhibition. This study shows a high-rate sulfate-reducing bioreactor system for the frrst time at pH 5, with a volumetric activity of 188 mmol $SO_4^{2-}$/I/d and a specific activity of 81 mmol $SO_4^{2-}$volatile suspended solids/d. The microbial community at the end of the reactor run consisted of a diverse mixed population including sulfate-reducing bacteria.
Keywords
Sulfate reduction; membrane bioreactor; DGGE; community analysis; formate; thermodynamics;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Amend, J. P. and E. L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev. 25: 175-243   DOI   ScienceOn
2 Buisman, C. J. N. and G. Lettinga. 1990. Sulphide removal from anaerobic waste treatment effluent of a papermill. Water Res. 24: 313-319   DOI   ScienceOn
3 Jong, T. and D. L. Parry. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571   DOI   ScienceOn
4 Morales, T. A., M. Dopson, R. Athar, and R. B. Herbert. 2005. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol. Bioeng. 90: 543-551   DOI   ScienceOn
5 Thiele, J. H. and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54: 20-29   PUBMED   ScienceOn
6 Van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594   DOI   ScienceOn
7 Weijma, J., C. F. M. Copini, C. J. N. Buisman, and C. E. Schultz. 2002. Biological recovery of metals, sulfur and water in the mining and metallurgical industy, pp. 605-625. In P. N. L. Lens and L. Hulshoff Pol (eds.). Water Recycling and Resource Recovery in Industry: Analysis, Technologies and Implementation. IWA Publishing
8 Bond, P. L., S. P. Smriga, and J. F. Banfield. 2000. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66: 3842-3849   DOI   ScienceOn
9 Messing, J. 1983. New M13 vectors for cloning. Methods Enzymol. 101: 20-78   DOI   PUBMED   ScienceOn
10 Peters, V., P. H. Janssen, and R. Conrad. 1999. Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr. Microbiol. 38: 285-289   DOI   ScienceOn
11 Stahl, D. A. and R. I. Amann. 1991. Development and application of nucleic acid probes in bacterial systematics, pp. 205-248. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester
12 Paulo, P. L., R. Kleerebezem, G. Lettinga, and P. N. L. Lens. 2005. Cultivation of high-rate sulfate reducing sludge by pHbased electron donor dosage. J. Biotechnol. 118: 107-116   DOI   ScienceOn
13 Johnson, D. B. and K. B. Hallberg. 2003. The microbiology of acidic mine waters. Res. Microbiol. 154: 466-473   DOI   ScienceOn
14 Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141   DOI   ScienceOn
15 Kaksonen, A. H., J. J. Plumb, W. J. Robertson, M. Riekkola-Vanhanen, P. D. Franzmann, and J. A. Puhakka. 2006. The performance, kinetics and microbiology of sulfidogenic fluidizedbed treatment of acidic metal- and sulfate-containing wastewater. Hydrometallurgy 83: 204-213   DOI   ScienceOn
16 Van Houten, B. H. G. W. 2006. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewater. Wageningen University
17 Kawazuishi, K. and J. M. Prausnitz. 1987. Correlation of vaporliquid equilibria for the system ammonia-carbon dioxide-water. Ind. Eng. Chem. Res. 26: 1482-1485   DOI   ScienceOn
18 Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, et al. 2003. The Ribosomal Database Project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nuclear Acids Res. 31: 442-443   DOI   ScienceOn
19 Dopson, M. and E. B. Lindstr$\ddot{o}$m. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microbial Ecol. 48: 19-28   DOI   ScienceOn
20 Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172   DOI   ScienceOn
21 Stams, A., J. Van Dijk, C. Dijkema, and C. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114-1119   PUBMED   ScienceOn
22 Van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560   DOI   ScienceOn
23 Elliott, P., S. Ragusa, and D. Catcheside. 1998. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res. 32: 3724-3730   DOI   ScienceOn
24 Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, et al. 2004. ARB: A software environment for sequence data. Nucleic Acids Res. 32: 1363-1371   DOI   ScienceOn
25 Raskin, L., R. I. Amann, L. K. Poulsen, B. E. Rittmann, and D. A. Stahl. 1995. Use of ribosomal RNA-based molecular probes for characterization of complex microbial communities in anaerobic biofilms. Water Sci. Tech. 31: 261-272
26 Van Houten, R. T., S. J. W. H. O. Elferink, S. E. van Hamel, L. W. H. Pol, and G. Lettinga. 1995. Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Bioresour. Technol. 54: 73-79   DOI   ScienceOn
27 Veeken, A. H. M., L. Akoto, L. W. Hulshoff Pol, and J. Weijma. 2003. Control of the sulfide ($S^{2-}$) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 37: 3709-3717   DOI   ScienceOn
28 Muyzer, G. 1999. DGGE/TGGE, a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322   DOI   PUBMED   ScienceOn
29 Kimura, S., K. Hallberg, and D. Johnson. 2006. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 159-167   PUBMED   ScienceOn
30 Bijmans, M. F. M., T. W. T. Peeters, P. N. L. Lens, and C. J. N. Buisman. 2008. High rate sulfate reduction at pH 6 in a pHauxostat submerged membrane bioreactor fed with formate. Water Res. 42: 2439-2448   DOI   ScienceOn
31 Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55: 1735-1741   PUBMED
32 Tabak, H. H., R. Scharp, J. Burckle, F. K. Kawahara, and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14: 423-436   DOI   ScienceOn
33 Janssen, A. J. H., G. Lettinga, and A. de Keizer. 1999. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surface Physicochem. Eng. Aspect 151: 389-397   DOI   ScienceOn
34 Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington
35 Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55${^{\circ}C}$) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotechnol. 64: 421-428   DOI   ScienceOn
36 Kaksonen, A. H., J. J. Plumb, W. J. Robertson, P. D. Franzmann, J. A. E. Gibson, and J. A. Puhakka. 2004. Culturable diversity and community fatty acid profiling of sulfate-reducing fluidizedbed reactors treating acidic, metal-containing wastewater. Geomicrob. J. 21: 469-480   DOI   ScienceOn
37 Lens, P., M. V. G. Vallero, G. Esposito, and M. Zandvoort. 2002. Perspectives of sulfate reducing bioreactors in enviromental biotechnology. Rev. Environ. Sci. Biotechnol. 1: 311-325   DOI   ScienceOn
38 Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol. Bioeng. 67: 354-363   DOI   ScienceOn
39 Roest, K., H. G. H. J. Heilig, H. Smidt, W. M. de Vos, A. J. M. Stams, and A. D. L. Akkermans. 2005. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst. Appl. Microbiol. 28: 175-185
40 Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113   DOI   ScienceOn