DOI QR코드

DOI QR Code

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$

  • Nevatalo, Laura M. (Department of Chemistry and Bioengineering, Tampere University of Technology) ;
  • Bijmans, Martijn F. M. (Sub-Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Lens, Piet N. L. (Sub-Department of Environmental Technology, Wageningen University and Research Centre) ;
  • Kaksonen, Anna H. (Department of Chemistry and Bioengineering, Tampere University of Technology) ;
  • Puhakka, Jaakko A. (Department of Chemistry and Bioengineering, Tampere University of Technology)
  • Received : 2009.06.02
  • Accepted : 2009.11.26
  • Published : 2010.03.31

Abstract

The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$. Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$, and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$, respectively. In the GLB experiment at $9^{\circ}C$, a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$, corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$, was obtained. The electron flow from the consumed $H_2$-gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.

Keywords

References

  1. Auvinen, H., L. M. Nevatalo, A. H. Kaksonen, and J. A. Puhakka. 2009. Low temperature (${9^{\circ}C}$) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic Desulfomicrobium species. Biotechnol. Bioeng. 104: 740-751.
  2. Bijmans, M. F. M., M. Dopson, F. Ennin, P. N. L. Lens, and C. J. N. Buisman. 2008. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J. Microbiol. Biotechnol. 18: 1809-1818.
  3. Buisman, C. J. N., J. Huisman, H. Dijkman, and M. F. M. Bijmans. 2007. Trends in application of industrial sulfate reduction for sulfur and metal recycling, pp. 383-387. Proceedings of European Metallurgical Conference, 11-14 June 2007, Dusseldorf, Germany.
  4. Esener, A. A., J. A. Roels, and N. W. F. Kossen. 1983. Theory and applications of unstructured growth models: Kinetic and energetic aspects. Biotech. Bioeng. XXV: 2803-2841.
  5. Esposito, G., J. Weijma, F. Pirozzi, and P. N. L. Lens. 2003. Effect of the sludge retention time on $H_{2}$ utilization in a sulfate reducing gas-lift reactor. Process Biochem. 39: 491-498. https://doi.org/10.1016/S0032-9592(03)00131-6
  6. Franzmann, P. D., C. M. Haddad, R. B. Hawkes, W. J. Robertson, and J. J. Plumb. 2005. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of Ratkowsky equation. Miner. Eng. 18: 1304-1314. https://doi.org/10.1016/j.mineng.2005.04.006
  7. van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594. https://doi.org/10.1002/bit.260440505
  8. van Houten, R. T., H. van der Spoel, A. C. van Aelst, L. W. Hulshoff Pol, and G. Lettinga. 1996. Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol. Bioeng. 50: 136-144. https://doi.org/10.1002/(SICI)1097-0290(19960420)50:2<136::AID-BIT3>3.0.CO;2-N
  9. van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560. https://doi.org/10.1016/j.watres.2005.12.004
  10. Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113. https://doi.org/10.1016/j.hydromet.2006.03.017
  11. Isaksen, M. F. and B. B. Jorgensen. 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microb. 62: 408-414.
  12. Isaksen, M. F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfatereducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160-168. https://doi.org/10.1007/s002030050371
  13. Kaksonen, A. H. and J. A. Puhakka. 2007. Review: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci. 7: 541-564. https://doi.org/10.1002/elsc.200720216
  14. Kaksonen, A. H., P. D. Franzmann, and J. A. Puhakka. 2004. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotech. Bioeng. 86: 332-343. https://doi.org/10.1002/bit.20061
  15. Kawazuishi, K. and J. M. Prausniz. 1987. Correlation of vapor-liquid equilibria for the system ammonia-carbon dioxide-water. Ind. Chem. Eng. Res. 26: 1482-1485. https://doi.org/10.1021/ie00067a036
  16. Knoblauch, C. and B. B. Jorgensen. 1999. Effect of temperature on sulfate reduction, growth rate and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1: 457-467. https://doi.org/10.1046/j.1462-2920.1999.00061.x
  17. Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarzin. 1996. Methanogenesis at low temperature by microflora of tundra wetland soil. Antonie Van Leeuwenheek 69: 75-86. https://doi.org/10.1007/BF00641614
  18. Nauhaus, K., M. Albrecht, M. Elvert, A. Boetius, and F. Widdel. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol 9: 187-196. https://doi.org/10.1111/j.1462-2920.2006.01127.x
  19. Ratkowsky, D. A., R. K. Lowry, T. A. McMeekin, A. N. Stokes, and R. E. Chandler. 1983. Model of bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226.
  20. Sahinkaya, E., B. Ozkaya, A. H. Kaksonen, and J. A. Puhakka. 2007. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and ${65^{\circ}C}$ is limited by acetate oxidation. Water Res. 41: 2796-2714.
  21. SFS Finnish Standards Association. 1990. SFS 3008: Determination of total residue and total fixed residue in water, sludge and sediment. Helsinki, Finland Finnish Standards Association.
  22. Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (${55^{\circ}C}$) hydrogenotrophic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotech. 64: 421-428. https://doi.org/10.1007/s00253-003-1430-4
  23. Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng. 67: 354-363. https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X
  24. Weijma, J., F. Gubbels, L. W. Hulshoff Pol, A. J. M. Stams, P. N. L. Lens, and G. Lettinga. 2002. Competition for $H_{2}$ between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Technol. 45: 75-80.
  25. Widdel, F. 1987. New types of acetate-oxidizing sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148: 286-291. https://doi.org/10.1007/BF00456706

Cited by

  1. Treatment of simulation of copper-containing pit wastewater with sulfate-reducing bacteria (SRB) in biofilm reactors vol.75, pp.19, 2010, https://doi.org/10.1007/s12665-016-6108-1
  2. Geochemical Effects of Millimolar Hydrogen Concentrations in Groundwater: An Experimental Study in the Context of Subsurface Hydrogen Storage vol.52, pp.8, 2018, https://doi.org/10.1021/acs.est.7b05467
  3. Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage vol.6, pp.4, 2010, https://doi.org/10.1007/s40726-020-00160-6