Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06016

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$  

Nevatalo, Laura M. (Department of Chemistry and Bioengineering, Tampere University of Technology)
Bijmans, Martijn F. M. (Sub-Department of Environmental Technology, Wageningen University and Research Centre)
Lens, Piet N. L. (Sub-Department of Environmental Technology, Wageningen University and Research Centre)
Kaksonen, Anna H. (Department of Chemistry and Bioengineering, Tampere University of Technology)
Puhakka, Jaakko A. (Department of Chemistry and Bioengineering, Tampere University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 615-621 More about this Journal
Abstract
The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$. Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$, and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$, respectively. In the GLB experiment at $9^{\circ}C$, a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$, corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$, was obtained. The electron flow from the consumed $H_2$-gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.
Keywords
Sulfate reduction; low temperature; gas-lift bioreactor; hydrogenotroph; homoacetogenesis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Kawazuishi, K. and J. M. Prausniz. 1987. Correlation of vapor-liquid equilibria for the system ammonia-carbon dioxide-water. Ind. Chem. Eng. Res. 26: 1482-1485.   DOI   ScienceOn
2 Buisman, C. J. N., J. Huisman, H. Dijkman, and M. F. M. Bijmans. 2007. Trends in application of industrial sulfate reduction for sulfur and metal recycling, pp. 383-387. Proceedings of European Metallurgical Conference, 11-14 June 2007, Dusseldorf, Germany.
3 Franzmann, P. D., C. M. Haddad, R. B. Hawkes, W. J. Robertson, and J. J. Plumb. 2005. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of Ratkowsky equation. Miner. Eng. 18: 1304-1314.   DOI   ScienceOn
4 Isaksen, M. F. and B. B. Jorgensen. 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl. Environ. Microb. 62: 408-414.
5 Knoblauch, C. and B. B. Jorgensen. 1999. Effect of temperature on sulfate reduction, growth rate and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environ. Microbiol. 1: 457-467.   DOI   ScienceOn
6 Nauhaus, K., M. Albrecht, M. Elvert, A. Boetius, and F. Widdel. 2007. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol 9: 187-196.   DOI   ScienceOn
7 Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng. 67: 354-363.   DOI   ScienceOn
8 Auvinen, H., L. M. Nevatalo, A. H. Kaksonen, and J. A. Puhakka. 2009. Low temperature (${9^{\circ}C}$) AMD treatment in a sulfidogenic bioreactor dominated by a mesophilic Desulfomicrobium species. Biotechnol. Bioeng. 104: 740-751.
9 Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113.   DOI   ScienceOn
10 van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594.   DOI   ScienceOn
11 Bijmans, M. F. M., M. Dopson, F. Ennin, P. N. L. Lens, and C. J. N. Buisman. 2008. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor. J. Microbiol. Biotechnol. 18: 1809-1818.
12 Kaksonen, A. H. and J. A. Puhakka. 2007. Review: Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng. Life Sci. 7: 541-564.   DOI   ScienceOn
13 Kaksonen, A. H., P. D. Franzmann, and J. A. Puhakka. 2004. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotech. Bioeng. 86: 332-343.   DOI   ScienceOn
14 Isaksen, M. F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfatereducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160-168.   DOI   ScienceOn
15 Esposito, G., J. Weijma, F. Pirozzi, and P. N. L. Lens. 2003. Effect of the sludge retention time on $H_{2}$ utilization in a sulfate reducing gas-lift reactor. Process Biochem. 39: 491-498.   DOI   ScienceOn
16 Ratkowsky, D. A., R. K. Lowry, T. A. McMeekin, A. N. Stokes, and R. E. Chandler. 1983. Model of bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154: 1222-1226.
17 Widdel, F. 1987. New types of acetate-oxidizing sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148: 286-291.   DOI
18 van Houten, B. H. G. W., K. Roest, V. A. Tzeneva, H. Dijkman, H. Smidt, and A. J. M. Stams. 2006. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 40: 553-560.   DOI   ScienceOn
19 SFS Finnish Standards Association. 1990. SFS 3008: Determination of total residue and total fixed residue in water, sludge and sediment. Helsinki, Finland Finnish Standards Association.
20 Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (${55^{\circ}C}$) hydrogenotrophic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotech. 64: 421-428.   DOI   ScienceOn
21 Esener, A. A., J. A. Roels, and N. W. F. Kossen. 1983. Theory and applications of unstructured growth models: Kinetic and energetic aspects. Biotech. Bioeng. XXV: 2803-2841.
22 Weijma, J., F. Gubbels, L. W. Hulshoff Pol, A. J. M. Stams, P. N. L. Lens, and G. Lettinga. 2002. Competition for $H_{2}$ between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Technol. 45: 75-80.
23 Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarzin. 1996. Methanogenesis at low temperature by microflora of tundra wetland soil. Antonie Van Leeuwenheek 69: 75-86.   DOI   ScienceOn
24 Sahinkaya, E., B. Ozkaya, A. H. Kaksonen, and J. A. Puhakka. 2007. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and ${65^{\circ}C}$ is limited by acetate oxidation. Water Res. 41: 2796-2714.
25 van Houten, R. T., H. van der Spoel, A. C. van Aelst, L. W. Hulshoff Pol, and G. Lettinga. 1996. Biological sulfate reduction using synthesis gas as energy and carbon source. Biotechnol. Bioeng. 50: 136-144.   DOI