• Title/Summary/Keyword: successive correction method

Search Result 14, Processing Time 0.027 seconds

Differential non-linearity correction for successive approximation ADC

  • Yamada, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.847-850
    • /
    • 1987
  • In this paper a new method to correct the differential non-linearity(D NL) error for a successive approximation is proposed. The DNL of ADC is very important characteristic in the field of radiation pulse height analysis or measurement of probability density function. The results of computer simulations are shown to demonstrate the feasibility of the proposed correction method.

  • PDF

Synthesis of Radar Measurements and Ground Measurements using the Successive Correction Method(SCM) (연속수정법을 이용한 레이더 자료와 지상 강우자료의 합성)

  • Kim, Kyoung-Jun;Choi, Jeong-Ho;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.681-692
    • /
    • 2008
  • This study investigated the application of the successive correction method(SCM), a simple data assimilation method, for synthesizing the radar and rain gauge data. First, the number of iteration and influence radius for the SCM application were decided based on their sensitivity analysis. Also, for the evaluation of synthetic rainfall, the distributed rainfall field using the dense rainfall gauge network was assumed to be the true one. The synthetic rainfall field based on the SCM was also compared quantitatively with the one based on the co-Kriging frequently used nowadays. As the results, the SCM, a simple and economical data assimilation method, was found to secure the accuracy and statistical characteristics of the co-Kriging application.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Real-Time Face Detection, Tracking and Tilted Face Image Correction System Using Multi-Color Model and Face Feature (복합 칼라모델과 얼굴 특징자를 이용한 실시간 얼굴 검출 추적과 기울어진 얼굴보정 시스템)

  • Lee Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.4
    • /
    • pp.470-481
    • /
    • 2006
  • In this paper, we propose a real-time face detection, tracking and tilted face image correction system using multi-color model and face feature information. In the proposed system, we detect face candidate using YCbCr and YIQ color model. And also, we detect face using vertical and horizontal projection method and track people's face using Hausdorff matching method. And also, we correct tilted face with the correction of tilted eye features. The experiments have been performed for 110 test images and shows good performance. Experimental results show that the proposed algorithm robust to detection and tracking of face at real-time with the change of exterior condition and recognition of tilted face. Accordingly face detection and tilted face correction rate displayed 92.27% and 92.70% respectively and proposed algorithm shows 90.0% successive recognition rate.

  • PDF

ATMOSPHERIC AEROSOL DETECTION AND ITS REMOVEAL FOR SATELLITE DATA

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.598-601
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

  • PDF

Atmospheric Aerosol Detection And Its Removal for Satellite Data

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.379-383
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A highresolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-l/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

Differential detection systems with nonredundant error correction and feedback combining (비용장 오류 정정과 궤환결합을 갖는 차동 검파 시스팀)

  • Han, Young-yeal
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.31-41
    • /
    • 1995
  • In this paper, the relationship between k consecutive outputs of the conventional differential detector and output of differential detector with k-symbol periods delay for differential MSK and GMSK systems is investigated. It is hown that there exists periodity in modulo-2 sum and product of k successive outputs of the conventional differential detector with the output of a detector with k-symbol periods delay circuit. This relationships are used to achieve performance gains over conventional differential detection. The error rate performance of the method is carried out by computer simulation and performance improvement is achieved for differential MSK and GMSK systems.

  • PDF

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

Spatio-Temporal Error Concealment of I-frame using GOP structure of MPEG-2 (MPEG-2의 GOP 구조를 이용한 I 프레임의 시공간적 오류 은닉)

  • Kang, Min-Jung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.72-82
    • /
    • 2004
  • This paper proposes more robust error concealment techniques (ECTs) for MPEG-2 intra coded frame. MPEG-2 source coding algorithm is very sensitive to transmission errors due to the use of variable-length coding. The transmission errors are corrected by error correction scheme, however, they cannot be revised properly. Error concealment (EC) is used to conceal the errors which are not corrected by error correction and to provide minimum visual distortion at the decoder. If errors are generated in intra coded frame, that is the starting frame of GOP, they are propagated to other inter coded frames due to the nature of motion compensated prediction coding. Such propagation of error may cause severe visual distortion. The proposed algorithm in this paper utilizes the spatio-temporal information of neighboring inter coded frames to conceal the successive slices errors occurred in I-frame. The proposed method also overcomes the problems that previous ECTs reside. The proposed algorithm generates consistent performance even in network where the violent transmission errors frequently occur. Algorithm is performed in MPEG-2 video codec and we can confirm that the proposed algorithm provides less visible distortion and higher PSNR than other approaches through simulations.