• Title/Summary/Keyword: subway system

Search Result 859, Processing Time 0.029 seconds

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Conceptual Design on Doorstep Equipments Used for Low and High Level Railway Platforms (저상 및 고상 철도 승강장 겸용 승강문 스텝 개념설계)

  • Park, Min-Heung;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3882-3888
    • /
    • 2012
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the doorstep equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, two different types of platforms were examined. On closer examination, it seems that the conceptual design is suitable for telescopic sliding type doorstep equipment to minimize damage to the carbody underframe of railway vehicles and can also minimize the variation of the distance between the railway platform. Furthermore, the operation process and control flowchart of doorstep equipments by stages are proposed by various performance requirements.

Train Regulation by the Advanced Algorithm for Subway (개선된 알고리즘에 의한 지하철 운행간격 제어)

  • Park, Hong-Kyu;Shim, Won-Sup;Hong, Soon-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.330-333
    • /
    • 2002
  • Even if the train of subway starts in a certain interval from the origin according to the operation plan. as the number of passenger gets increased during operation. the boarding and getting-off time will increase, and the temporary breakdown happens to the system of train during operation, causing the delay from the operation plan. this leads to the vicious circle of train operation. making the interval of train operation irregular in downtown especially. To solve this problem, we propose the method of advanced algorithm by the actual data relating to the train operation including operation time required between stations, distance between stations. capability of train, and the dwelling time, location and distance between the preceding train and next one. The central train control system adjusts the dwelling time at each station in order to recover the delayed time, and increase the operation speed at the each station. As control algorithm is applied the dwelling time and to increase the speed, the train maintains certain interval after certain amount of time passes.

  • PDF

Analysis of the Stray Current Conditions in Subway DC Electrification System (II) Busan Metropolitan Area (지하철 직류 급전시스템의 표유전류 실태 분석(II) 부산 지역)

  • Ha Yoon-Cheol;Ha Tae-Hyun;Bae Jeong-Hyo;Kim Dae-Kyeong;Lee Hyun-Goo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1367-1369
    • /
    • 2004
  • When an underground pipeline runs parallel with subway DC electrification system, it suffers from stray current corrosion caused by the stray current from the rails negative returns. Perforation due to the stray current corrosion may bring about disastrous accidents such even in cathodically protected systems. Traditionally, bonding methods such as direct drainage, polarized drainage and forced drainage have been used in order to mitigate the damage on pipelines. In particular, the forced drainage method is widely adopted in Busan. In this paper, we report the real-time measurement data of the pipe-to-soil potential variation in the presence and absence of the IR compensation. The drainage current variation was also measured using the Stray Current Logger developed. By analyzing them, the problems of current countermeasures for stray current corrosion are discussed.

  • PDF

Mining Trip Patterns in the Large Trip-Transaction Database and Analysis of Travel Behavior (대용량 교통카드 트랜잭션 데이터베이스에서 통행 패턴 탐사와 통행 행태의 분석)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.44-63
    • /
    • 2007
  • The purpose of this study is to propose mining processes in the large trip-transaction database of the Metropolitan Seoul area and to analyze the spatial characteristics of travel behavior. For the purpose. this study introduces a mining algorithm developed for exploring trip patterns from the large trip-transaction database produced every day by transit users in the Metropolitan Seoul area. The algorithm computes trip chains of transit users by using the bus routes and a graph of the subway stops in the Seoul subway network. We explore the transfer frequency of the transit users in their trip chains in a day transaction database of three different years. We find the number of transit users who transfer to other bus or subway is increasing yearly. From the trip chains of the large trip-transaction database, trip patterns are mined to analyze how transit users travel in the public transportation system. The mining algorithm is a kind of level-wise approaches to find frequent trip patterns. The resulting frequent patterns are illustrated to show top-ranked subway stations and bus stops in their supports. From the outputs, we explore the travel patterns of three different time zones in a day. We obtain sufficient differences in the spatial structures in the travel patterns of origin and destination depending on time zones. In order to examine the changes in the travel patterns along time, we apply the algorithm to one day data per year since 2004. The results are visualized by utilizing GIS, and then the spatial characteristics of travel patterns are analyzed. The spatial distribution of trip origins and destinations shows the sharp distinction among time zones.

  • PDF

Estimation of Diffusion Direction and Velocity of PM10 in a Subway Station (For Gaehwasan Station of Subway Line 5 in Seoul) (지하철 역사 미세먼지(PM10)의 확산방향과 확산속도 추정 (서울 지하철 5호선 개화산역을 대상으로))

  • Park, Jong-Heon;Park, Jae-Cheol;Eum, Seong-Jik
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.55-64
    • /
    • 2010
  • In order to prepare an efficient solution for PM10 reduction in underground stations, the authors measured PM10 concentration levels every 30 minutes in the concourse, platform, and tunnel of Gaehwasan Station of Seoul's subway line 5. Through a correlation analysis of each changing pattern of PM10 concentration, the direction and velocity of diffusion in underground stations were estimated. The PM10 concentration levels were highest in the tunnel, followed by the platform and concourse. PM10 concentrations in the tunnel, platform, and concourse showed a pattern of increasing in the rush hours and decreasing in the non-rush hours. According to the statistical analysis of PM10 concentrations and changing patterns in each location, the higher PM10 concentration in the tunnel expanded to the platform, and some from the platform expanded to the concourse. Therefore, to efficiently reduce PM10 concentrations, it is essential to detect the centralized generation, diffusion factor, expanding route, expanding measure, and other variables and to remove or reduce the diffusion factor and level. Through operating the ventilation system in the right time frame while the PM10 concentration level increases, the power consumption and peak power consumption can be reduced.

A study on the Effects and Improvements of a Train Drivers' Licensing System (철도기관사 면허제 시행효과 및 개선방안에 관한 연구)

  • Lee, Chan-Bong;Park, Jin-Pyo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2015
  • During normal subway rush hours, a train-driver is in charge of more than 3,000 people on a daily basis. When an emergency event occurs, millions of people and their property come to depend only on the train-driver's ability. After the Daegu subway fire disaster in February 2003, the Railway Safety Act was enacted in October 2004 and the 'Train Drivers' Licensing System' was introduced by the National Railroad Administration in July 2006 to secure and improve protection. This study was conducted to investigate and evaluate the effects of the Train Drivers' Licensing System since the Licensing System was first introduced eight years ago. In addition, the analysis will suggest better policies for the effectiveness of the 'Train Drivers' Licensing System'.

A Study on ATS Control Procedure to adopt Low Density Line (저밀도 노선 적용을 위한 ATS 제어절차에 관한 연구)

  • Cho, Bong-Kwan;Park, Kee-Joon;Park, Pyoung-Sik;Lee, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.830-837
    • /
    • 2015
  • A study which is to develop the low-cost urban railway system for low-density line such as Gwang-ju subway Line 2 is in progress, and its TCS(Train Control System) is required as an economic system which is able to train operation suitable in low-density line. We have developed the signaling equipment which is configured with automatic block system between stations, and the control center's equipment in order to meet the requirements of TCS mentioned above. In this paper, we propose the control procedure of ATS to be required for train operation management in the low-density line such as Gwang-ju subway Line 2. The control procedure of ATS considered all features such as the requirements analysis for train operation management, the functions of train control system to be applied and the block type. Also, it considered the station(interlocking, passenger, turn-back) type, station control(stop, route, departure, turn-back departure, turn-back) type, and train operation management for exiting and entering depot. The ATS control procedure proposed in this paper has an advantage in the cost and efficiency through unification and optimization of its function. And in cost of operating and maintenance, the ATS system has a feature that can be significantly reduced.

Fuel Cell Track Rapid Transit for Metro Area (도시형 연료전지 궤도차량 시스템)

  • Chang, Seky;Mok, Jai-Kyun;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.842-846
    • /
    • 2004
  • Both traffic congestion and air pollution in the metropolitan area can be greatly relieved by promoting the use of public transportation with zero emission system. Bus and subway are very convenient means for the people moving in the route areas. But they are not enough to satisfy handicapped or old people to have access to them and also do not solve environmental problems completely. New vehicle system, fuel cell track rapid transit, will be introduced as a countermeasure for such problems in the present paper.

  • PDF

Applicaton of a Geomechanical Classification for Rock Slope (암반 사면에 대한 새로운 암반 분류안의 적용)

  • 김대복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.215-227
    • /
    • 1994
  • Rock Mass classifications have been developed in many European countries. The most widely used classification methods are the Rock Mass Rating (RMR) system proposed by Bieniawski(1973) and the Q-system developed By Barton et al. (1974). These methods are also adopted at many mountain tunnels and subway sites in our country. Here, a geomechanical classification for slopeds in rock, the "Slope Mass Rating"(SMR) is presented for the preliminary assessment of slope stabiliyt. This method can be applied to excavation and support design in the front part of tunnel and cutting area as a guide line and recommendation on support methods which allow a systemmetic use of geomechanical classification for rock slopes.

  • PDF