• Title/Summary/Keyword: subsystems

Search Result 862, Processing Time 0.024 seconds

An accelerated sequential sampling for estimating the reliability of N-parallel systems

  • Rekab, Kamel;Cheng, Yuan
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2013
  • The problem of designing an experiment to estimate the reliability of a system that has N subsystems connected in series where each subsystem n has n $T_n$ components connected in parallel is investigated both theoretically and by simulation. An accelerated sampling sheme is introduced. It is shown that the accelerated sampling scheme is asymptotically optimal as the total number of units goes to infinity. Numerical comparisons for a system that has two subsystems connected in series where each subsystem has two components connected in parallel are also given. They indicate that the accelerated sampling scheme performs better than the batch sequential sampling scheme and is nearly optimal.

  • PDF

Configuration and Construction for the KASS KRS Site Infrastructure

  • Jang, HyunJin;Jeong, Hwanho;Son, Minhyuk;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2021
  • In this paper, we described configuration and construction of infrastructure for the KASS Reference Station (KRS), subsystem of Korea Augmentation Satellite System (KASS). KASS system consists of three subsystems(KRS, Mission Control Center (MCC), KASS Uplink Station (KUS)). One of these subsystems, KRS receives GNSS data for generating range error and integrity verification and sends to MCC. It is needed to antenna facilities for mounting GNSS antenna and shelter for operating KRS and infra equipment(power and network system, lightning and grounding system, fire extinguish) for operating KRS. For this reason, we have established the requirements for KRS infrastructure and constructed infrastructure for KRS to meet the requirements of KRS infrastructure.

Modelling Data Flow in Smart Claim Processing Using Time Invariant Petri Net with Fixed Input Data

  • Amponsah, Anokye Acheampong;Adekoya, Adebayo Felix;Weyori, Benjamin Asubam
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.413-423
    • /
    • 2022
  • The NHIS provides free or highly subsidized healthcare to all people by providing financial fortification. However, the financial sustainability of the scheme is threatened by numerous factors. Therefore, this work sought to provide a solution to process claims intelligently. The provided Petri net model demonstrated successful data flow among the various participant. For efficiency, scalability, and performance two main subsystems were modelled and integrated - data input and claims processing subsystems. We provided smart claims processing algorithm that has a simple and efficient error detection method. The complexity of the main algorithm is good but that of the error detection is excellent when compared to literature. Performance indicates that the model output is reachable from input and the token delivery rate is promising.

Injective S-Systems and Regular Semigroups

  • Kim, Jupil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • In this paper, we want to find some properties of subsystems of injective S-systems. Also we find a relationship between the regular semigroup S and the S-system M over S.

  • PDF

조선 : KS-STEP

  • 김용대
    • Proceedings of the CALSEC Conference
    • /
    • 2000.08a
    • /
    • pp.115-126
    • /
    • 2000
  • □ Ship Structural Envelope : hull form(AP216), arrangements(AP215), structure(Ap218) □ Distributed Systems : piping(AP227), electrical(AP212), HVAC(AP227) □ Mission Subsystems/Equipment : mechanical(AP226), electronics(AP212), operation(AP234) outfit and furnishings (FunSTEP), weapons(중략)

  • PDF

Design of the COMS Satellite Ground Control System (통신해양기상위성 관제시스템 설계)

  • Lee, Byeong-Seon;Jeong, Won-Chan;Lee, Sang-Uk;Lee, Jeom-Hun;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2006
  • As a multi-mission GEO satellite, COMS system is being developed jointly by KARI, ETRI, KORDI, KMA, and industries from both abroad and domestic. EADS ASRTIUM is the prime contractor for manufacturing the COMS. ETRI is developing the COMS Ka-band payload and SGCS with the fund from MIC. COMS Satellite Ground Control System (SGCS) will be the only system for monitor and control of the satellite in orbit. In order to fulfill the mission operations of the three payloads and spacecraft bus, COMS SGCS performs telemetry reception and processing, satellite tracking and ranging, command generation and transmission, satellite mission planning, flight dynamics operations, and satellite simulation, By the proper functional allocations, COMS SGCS is divided into five subsystems such as TTC, ROS, MPS, FDS, and CSS. In this paper, functional design of the COMS SGCS is described as five subsystems and the interfaces among the subsystems.

  • PDF

A Study on Steady-State and Transient Simulation of Turboprop Engine Using SIMULINK® Model (SIMULINK® Model를 이용한 터보프롭엔진의 정상상태 및 천이모사 연구)

  • Gong, Chang Deok;Im, Gang Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.100-109
    • /
    • 2003
  • A performacne simulation model of the PT6A-62 turboprop engine using the $SIMULINK^R$ was proposed to predict transient and steady state behaviors. The $SIMULINK^R$ has several advantages such as user-friendliness due to the GUI(Graphic User Interfaces) and ease in the modification of the computer program. The $SIMULINK^R$ model consists of subsystems to represent engine gas path components such as flight initial subsystem, compressor subsystem, burner subsystem, compressor turbine subsystem, power turbine, exhaust nozzle subsystem and integrator subsystem. In addition to subsystems, there are search subsystems to find an appropriate operating point by scaling from the 2-D components look-up table, Gasprop Subsystem to calculate the gas property precisely. In case of steady state validation, performance results analyzed by the proposed $SIMULINK^R$ model were agreed well with the analysis results by the commercial GASTURB program. Moreover in validation of the transient model, it was found that performance simulation results by the proposed model were reasonable agreement with analysis results by the well-proved computer program using FORTRAN.

Isolating Subsystems by Valves in a Water Distribution System and Evaluating the System Performance (상수관망에서의 밸브에 의한 관의 부분적 격리와 상수관망의 효율성 평가)

  • Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.585-593
    • /
    • 2005
  • Recent concerns regarding protecting, identifying, isolating, redundant routing and dewatering of subsystems of water distribution networks have led to the realization of the importance of valves in these systems. Valves serve two purposes namely, flow and pressure control and isolating subsystems due to breakage or contaminant containment. In this paper, valves are considered from the point of view of subsystem isolation. When a water main is required to be closed, it may be in general necessary to close several other pipes in addition to the broken pipe itself depending on the distribution of adjacent valves. This set of pipes is defined as a segment. In this paper a segment analysis for isolating pipes is present and based on the segment analysis, we suggested the Valve Importance Index and the 7 performance indicators to evaluate the system performance. The suggested methodology is applied to a real network to verify the applicability of the methodology.

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF