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Decision Makes for the Reliability Apportionment
in Subsystems with Different Effort Functions
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Summary and Conclusion

The optimal reliability apportionment of development effort to raise the reliability for systems
of fixed structure is discussed from a deterministic standpoint and also when there is uncertainty
in component reliabilities at various stages of development, The effort minimization algorithm
requires that all subsystems be subject to the same effort function, A, Albert[1,5] solved the
problem for effort functions(series case) which were the same for all subsystems,

In this paper, the solution allows different effort functions to be associated with different
subsystems and it accomodates the general structure of systems, In section 3—5, the effort
functions under constraints subject to specified level of reliability are minimal and allow great
flexibility in modeling the relationship between effort and reliability increasing, In view «f 1he
subjectivity involved in modeling the effort functions, and of the uncertainty in subsystem
reliabilities, it is advisable to carry out the analysis with a variety of competing effort functions
s0 as to assess the sensitivity of the results to the assumptions,

Particutarly, the new factors, namely reliability importance of subsystem ([ 7] and ratio of
rate of increase of effort to reliability importance for subsystem 7[€; were involved for
analyzing of these problems in the study,

Twe optimization programmings are suggested to determine the optimal reliability apportion
ment, Dvnamic programming and Lagrange multiplier method may prove efficient in deterniin
ing the reliability apportionment with minimum effort when the subsystems are subject to
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different but measurable effort functions, Sometimes we are forced to maximize the system
reliability for a given total effort, This problem may also be formulated as an optimization
problem under constraints and, when these constraints are appropriately defined, The Lagrar-
gian approach can also be used to apportion the total effort available to subsystems so that
system reliability is maximized, This problem is the dual of the minimization,

We believe that these methodologies for determination are useful aid to decision making
concerning reliability improvement,

1. Introduction

The objective of reliability allocation is to use the reliability model to assign reliability to the
subsystems so as to achieve a specified level of reliability goal for the system, This allocation
problem is complex for several reasons, among which are ; the role a subsystem plays for the
functioning of the system, the method of accomplishing this function, the complexity of the
subsystem, and the reliability of the subsystem chaning with the type of function to be perio:-
med, The problem is further complicated by the lack of detailed information on many of thete
factors early in the system design phase,

During the development course suppose that a system has not achieved a specified reliability
goal, To meet this goal, we should determine the optimal apportionment to improve subsystein
reliabilities so that the total resources allocation is a minimum, The quantification of resources
is given in terms of effort functions which are as realistic and unrestrictive as possible,

The general effort minimization algorithm requires that all subsystems be subject to the same
effort function, However, if this requirement cannot be met, we have to find a certain speciul
methodology which may prove efficient in determining the reliability allocation with minimum
expenditure of effort when the subsystems are subject to different but measurable effort func-
tions,

This paper is to offer the optimal policy to determine the reliability allocation with minimun
effort to increase the system reliability when the subsystems are subject to the different effort
functions, Nonlinear programming using Lagrange Multipliers and Dynamic programming are
employed to determine the optimal policy what we want to get,

2. Notation

m > number of subsystem

Py : the state at stage K

R . system reliability

R* : svstem reliability goal

X - reliability level of subsystem ¢ at the present state of development 0< x. <1
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Y : reliability goal set for subsystem 7, x < %<1
n* : optimal reliability goal apportioned to subsystem 7 that minimizes the total
development effort,

Q: s ratio of rate of increase of effort to reliability importance for subsystem
f(x) . system reliability function for x

f () . system reliability function for y

G(x;, ¥) . effort function associated with subsystem x,, ¥,

G (R, R*) :effort function for the system R, R*

T:(+) . reliability importance of subsystem ¢

fx (Py) : optimal return function for stage K,

3. Effort Functions and Conditions

Let’s suppose the required reliability R* for the system is greater than the present reliability
R. It is clear that to achieve R*> R, the reliability of at least one subsystem must le
increased, To do this, a certain amount of expenditure of “effort” is needed, Some typicil
examples of this effort are : further engineering development, extra manpower, extensiie
testing, new technology,

Let the effort function, denoted by G(R;, R;*). i=1,2 ---, n, be defined to be the amount of
effort needed to increase the reliability of the /th subsystem from a level R, to a new leval
R,*. The effort function G(x,»), v>x=(), is assumed to satisfy the following conditions :

L G, y!){>0, MX, .

=(), otherwise
2. G(x, y:) is nondecreasing in y; for a fixed value of x, and nonincreasing in y; for a fixed
value of y, ; that is
G(x:, v) <G, Yyet+dv), dy.>0
G(x:,, ¥:)2Glt+dx, v, dx>0
3. G{x;, Y;) is additive, that is
Glx;, v)4 Gy, 2z)=Gx, z), <y;<z

4. G0, x) is differentiable in(0, 1), 0<x <1,

5. d*G(0, x)/d*x>0, 0<x,<1
6

Glx;, v;)—o0o as v —1 for fixed x, 0<x,<1

7. G(R,R") = f]G(x,, y:), ¥ =x;, with at least one inequality being strict,

P
A consequence of the conditions from 1 to 7 is that the problem has a solution within the
-dimensional unit hypercube, At the stage of development characterized by x the rate of
increase of total effort with respect to system reliability is :

dG (0, R)/dR = i (G0, x)/du)/af (x)/ox
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= $4dG (0, x)/dx}/Ti(x)

::Zl Qi (xi) ( [)

where T,=af (x)/ox; >0, 0<x;<1.i=1,2,---,m, and Q;(x)={dG(0, x)/dx;}/Ti(x;), [ are
called reliability importances and they feature prominently in the determination of the opt mal
reliability apportionment with minimal effort, Considering a series system for which 7;(x,) : R/
Xi,

If x<x<--<x, then T (x)>T,(x%)+>Tn(x,) and the component with highest failure
probability is the most reliability important for the functioning of the system,

4. Optimal Reliability Apportionment

4.1 Lagrange Multiplier Approach

The problem may be formulated as nonlinear optimization under constraints,
min 3Gz, »)=G(R,R") ()
=1

subject to
S =R"
and
0<x,= v <1, i=1,2,,m

considering the Lagrange function(Assuming convex function ; Appendix)as ;

LCy, 0= NG, ») -ALF(x) - R* ()

t-1

where AR* is the system reliability goal(specified reliability), In the above identity the iritial

reliabilities x;, x,, -, x, are considered foxed,

LY, ) 0G(E, v o ()
d Vi oM LA



Jl/._(%'j_.{l L (R —F () =0 (5)

By additivity (condition 3) we may write 3G ( x,, 3.)/3v=dG(0, ¥:)/dy..

From equation(1), Let system reliability be R, and label the subsystems so that @ (%) <(}
() <vovven < &n(xm) be the corresponding values when system reliability is R*, B*> R, Then the
optimality is :

Qin) =0 ()= =@ Yx) S Qi Ygo ) Soveeee S @n( ¥m)
F(y)=R*

K is determined by R*—-R, and 1<K <m,
For a series system with all subsystem effort functions the same, the ordering @ (1) <@, (x,)
Leenens < G (%n) becomes x <xpe-ee <x, and the optimality is [1, 2]

m
[l =y, where v,=x, for i=K~+1,--, m,
r=K~+1

The optimality is to increase the reliabilities of the K weakest subsystems to a common vahue
and leave the remaining subsystems alone,

If we are required to solve the problem to maximize the system reliability for a given total
effort, This problem may also be formulated as an optimization problem under constraints :nd,
when these constraints are approprlately defined, Lagrange multidier method can be used 10
apportion the given total effort to subsystems so that system reliability is maximized,

max R*=f(y) (6)

subject to

G(R, R =3 Gx. y)=F.

and



where Ec¢ denote the amount of given total effort,
This optimization problem can be selved by a method similar to the one used in equation:3),
We write the Lagrangian function(Assuming concave function, Appendix) as:

L(y, D=/ (30 -AZGx, 3)—E) ()

The maximum is

oL( Y, A) _af(») oG (x;, v:) ()
oy T +A< Wi )

aL( y’i ‘/,1.)7 _ Z R - . [}

—"—7; "(EIG(xi y:)) Ec“o (‘»)‘)

4.2 Dynamic Programming Approach

Let us consider a proposed system consisting of » subsystem, each of which is to be developed
iudependently and are assumed to be in series, We wish to quantify the reliability goal to he set
for each subsystem so that the system goal will be attained with a minimum expenditure f the

development effort,
Defining the following optimization problem :

I3
min 2 Gz (1,, yi )
=1
subject to
m
[My.=R* (16
i=1
and
0<x<<y<1l, i=1,2,",n,
This problem can be converted to a dynamic prgramming problem in the fellowing fa<hion,

* Stages
Identify each of the in subsystems as a stage, Thus a reliability apportionment decision can
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be made sequentially at each stage,

* State Variable

Define the set Py of all possible states Py at stage K, Then we have the follawing relationship
among the state variables :

1=P, 2P, 2P, = >P =P=7

Xa< Y, < XesYe<1 X, <Y <1
comr;(;r:e;r_lxz N component component
——f ’Z - m— K e, bt b e 0. 1 rre—
B=1| P | e | R=r"
f Y
G X ) Ge (Xx, Yi) G.(X,, Y0

* Transfer Relationships
PY, =P, PKYK:PK i P] Yl :Po
Let TK(PKy dx) :PKY}{::PK 1 K::LQ.'”,VZ

The state variables indicate how much reliability may be allocated for the stage in order to
meet the system reliability goal,

% Decision Variable

Define the set D) of all possible decision alternatives dx =3k at stage K such that Xx=< Y=

1’ K'TI.Q,"‘ m,

’

* Return Function

R (P, di)=Gg(Pg, Yy)
Kzl‘ 2’ e M,

Let fx (Px) be the optimal return function for stage X, Then the general recursion equation for
the dynamic programming problem is

Ji (Pg) = H;]iﬂ{GK(PK. dy) +fi 1 (Pxo1)} (11}
K



and £ (P) =0, The above equation is used recursively backward to solve the problem,
Considering the parallel structure, its structure similar to series model, This is done by
considering the unreliability levels of the subsystems, Let y; be the reliability level for the /:h

subsystem, Then we want

(1- %) =R*

s

I
-

1 —
Let

Wi=1—

Hence, the optimization problem is
min g}Gi(x,, 1- W,;))
subject to
fw.<1- " (12)

This problem presented by equation(12) is similar to the problem presented in equation(1()

and hence can be solved by dynamic programming,
5. Numerical Example
Example 1 : Using Lagrangian Function
Considering a series-parallel system :
%=0.6

=09 - %=0,95 —
X ; -[\'a ] E‘:O.g

All subsystem states are mutually independent,
System reliability is :

R:(.- {t") (1 —xila(l“wf))

= X% (% + X —X%X)

nm

[
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and effort functions :

Gx, i)=& (n(1—x)In(1— )
(14)

i=1,2,,m

where b, determine the relative effort between one subsystem and another, Let b; denoted by
b=2, bh=1, =2, b =3, The system reliability at the present is :

R =0, 7867
and Q;(x;) are

Q: (%) ={dG (0, x:)/dx;}/ T (x;) (15)
From condition 3 and 4(additive and differentiable)

G0, x) =G0, »)—G(x, )

hence,

dG(0,%) _, [ 1 o ()
o2) _p| 2] and Tuiw) =L

Then : R =0, 7867

Qi (x) =228, Q(x)=242, G(x)=29.2, Gh(x)=43.9

Since @, (x,) <@ (x) < (% (%) <& (x), Relabelling is not necessary, Here, if we hope the system
reliability would be inereased to the value 0,95, we should determine the optimal reliabil:ty
apportionment with minimum effort under specified system reliability 0, 95,

In this example, the subsystem 4 has b,=3, which is the coefficient of the highest relative

effort of all the subsvstems, Hence we let
Q (Y =@ (w) =@ (%) <Q(w) and 3= x,

From equation (3), (4), (5) and (13), (14)



ALy, A) (=2

B ) ) +A(33 + 3ed — 3238 30) =0

Qé%f-ﬂ) = (?2_3& >-+-/1 (nds + 33— 030) =0

oLy, A) _ <’ W=2 ) + Ay —yiey) =0

N 13
bR / h, o=
oL ((j;;; A) (\—?4‘_ j )‘f“/i (e~ 3eys) =0
o (év/l A = Veds + M 0eds — M3 ¥ — 0, 95:=0

The results are : »*=0,98, »*=0.99, »*=0.90, %*=0,80 and Q.*(¥.)={dG(0, ¥.)/dy:}/
T.(y), hence @ *(n)=103, @&*{(¥:)=103, €*(®) =103, *(.) =154,
The minimum total effort for inereasing the system reliability up to 95% is:

G*(R,R*)=(-*(0,7866, 0.95)=2 In 5+ In 5+2In 4+3 In 1
=76
Example2 . A Dynamic Programming Approach

System has three independent subsystems, The system can function successfully if and only f
each of the three subsystems functions properly, The system reliability requirement is 0, 9(,
Based on engineering analysis and historical data for similar systems, the estimated reliabslity
levels of the subsystems are 0,91, 0,92, 0,95, Now we should set the reliability goal for each
subsystem in order to miinimize the total expenditure of effort, The estimated effort functiors
are as shown in Table

The recursion equattons are !

A(R)= min (G0.91, 3))

fz(Pz): )mi“ (G2(0,92, ) +A(P))

20,30 Byt

fi(B) = min (650,95, %) <4 (F2)

20, W0 Py

First we develop the state transformation tables that give us the set of all possible input states
for various stages, Since the system reliability goal is 0, 90
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Table |. Effort functions

» G (0,94, W) o G(0.92, ») % G(0,95 !
0.91 (:
0.92 \ 0,92 0
0,93 0,93 2
0,94 ! 0.94 4
0.95 1.5 0,95 10 0.95
0. 96 s 0, 96 18 0,96
0.97 20 0,97 30 0.97 10
0,98 50 0,98 50 0,98 40
0.99 1010 0.99 90 0.99 100
Table 2. Transformation at Stage 3
LGP, w=Fyn=1-n=1"Fk
Y 0,95 0.96 0,97 0,98 0.99
B 0,95 9, 96 0.97 0. 98 0,99
Table 3. Transformation at Stage 2
o P =Py
BN 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0, 9¢
0.95 0. 865 0. 874 0. 884 0.893 0,903 0.912 0,922 0,931 0.941
0,96 0,874 0, 8283 0.893 0.902 0,912 0. 922 0,931 0. 941 0.950
0,97 0, 883 0, &92 0.902 0,912 0,921 0,931 0,941 0. 950 0,961
0.98 0. 891 0,902 0.911 0.921 0.931 0. 941 0. 950 0, 960 0,97
0,99 0,902 0,411 0,921 0,931 0,941 0. 950 0. 960 0,970 {1, 981

Values of P, less than (0, 91 are not feasible and hence nieed not be considered, The infeasible
values of the state variables are shown in Table 4 as blank entries, Only the values of #}

greater than 0,90 are shown in Table 4,



Table 4. Transformation at Stage |I.

»n Py=5A

B 0.92 0.93 0. 94 0. 95 0.96 0.97 0. 98 0.99
0,911 0, 602
0,912 0. 403
0,921 0. 902 0. 912
0,922 0. 904 0.413
0. 931 0.903 0. 912 0, 622
0, 941 0,903 0,912 0.921 0, 432
0, 950 0,903 0,912 0.921 0,931 0. 441
0. 960 0. 902 0,912 0. 921 0.931 0,941 0,651
0. 970 0. 902 0,912 0,921 0, 931 0. 941 0.951 0. 460
0. 980 0. 902 0,911 0,921 0,931 0, 941 0.951 0. 960 0. 470

Table 5.
» - o ) AP
B 0.92 0.93  0.94 0.95  0.96°  0.97 0.98 0.99

0,911 100 100
0.912 100 100
0,921 50 100 50
0.922 50 100 50
0,931 20 50 100 20
0. 941 8* 20 50 100 &
0, 950 4.5 8 20 50 100 45
0. 960 3 4.5 8 20 50 100 3
0. 970 2 3 4,5 8 20 50 100 2
0. 980 1 3 4,5 8 20 50 100 1

We will now develop the optimal return functions, Using equation 11, we have

f(P)=min [G(F, »)+h(R)]

=min G (A. Y1)

since £ (F,) is zero,



Proceeding to the next stage, we write

H(P) :m“in [ (P ) +A(P)]

Finally, we have

fi(P) = ('*;\'31) (P, w)+ (P ]

Table 7 shonws that the minimum value of the total effort is 48, Also, this is achieved when
w*=0,97. Tracing backward, from Table 6, we find that ,*=0,97 when £ (F,) =38, This meun
that £ (F) =8 and hence from Table 5 3 *=10, 96,

Table 6.
N o _ _ .
\ ¥y (B, w)=G (B, ) +f(P)
, \\ R R . fé ( P )
£ ~ 0,93 0,94 0,95 0,96 0.97* 0.98 0,99
0.93 50100 90+50 14(
0, 94 304100 50450 90+20 100
0,95 184100 30450 50420  90+8 70
0. 96 104100 18450 30420  50+8 90+4.5 50
0.97 44100 10450 18420  30+8°  50+4.5  90+3 3
00, 98 2--100 4450 10420 18+8 304+44.5  50+3 90+ 2 2%
0, 99 2+ 50 4420 1048 18445 3043 50+2 90+ 1 1t
Table 7.
IR Z(P. 1) =Gy(P 3) +5(P)
\\ e e SO — f (P )
) 0.96 0.97* 0. 9% 0.99 e
{ 1 3--50 10+38* 40476 100+18 48
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APPENDIX

1. Case of Minimization

G(R, RY)=32G(x:, )

o (15 m (3)

+8 In <411;_§-»>+b4 In (l:-"?—‘—)

L) =33v +nmy—3nkny—0,95=0
L, D=2G(x, 3)+A(F ()R,

Determination of sufficient condition by using Hessian determinent as following :

AV,
let i =/
and Li=2/(1-23)% Ln=1/(01—2)% La=2/(1—mn)?

L=3/(1—3)% Li=Ly=+A00+y— %0,
Lis=Lay=+A0—wy), Lu=Li=+A(%m—nn),
Lyy=Ly=+A(n—1w%), Li=Lo=+A(—n%),
Lyy=Lgs=+A(~nx)

0 A £ K A

AL Ly L, Ls Ly
|H|: ]; Li'l Lzz 143 1{424

A La Ly Lss L
Ao oLy Ly Ly L



0 Ak 0 J; J; 2
|Ho|=| £ L L. | <0, |Hy|= ! 1 L 13 <0
j f; LZI LZ Lzs
b Lo La
f:; L31 L3'.f L33
|H=|H|<0

G(R, R*) is convex function with minimum value since [H,|<0, |H,|<0, |H.|<0.

2. Case of Maximization
Ly, N=rin)+ 56 @, v -E.)

Let oG (x,-,' i)

Ly, A) _
v = L

v a}’,‘ ayz J

0 & & & &
g 1. L, Ls Ly,
A=\ & In Lo Ls L
g Lo Lsy Ly Ls,
& la Ly Lis Ly

0 & &2 &5

0 & £2
£ j & L L1 L
|Ho =g L Li| >0 [Hj= & 11 2 13 <0
{ & Ly Lo Ly
& fan L

g3 Lal -L.wz L33

IH4|:|HI>O,

F () is concave function with maximum value since |H,|>0, |H;|<0, | A >0,
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