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Injective S-Systems and Regular Semigroups

JupiL KM

ABSTRACT. In this paper, we want to find some properties of
subsystems of injective S-systems. Also we find a relationship
between the regular semigroup S and the S-system M over S.

1. Introduction

The relation between an injective module M over R and a ring R
can be explained by Baer criterion. The corresponding idea also can
be applied to S-system M over semigroup S by congruence relation
on S. But there are many different properties between R-modules and
S-systems. So we need a new definition named weakly injective S-
system. Also we want to study weakly injective S-systems and related
semigroups.

Using the torsion free congruence of S-system defined by C.V. Hin-
cle, Jr [4], we discover an equivalence condition of p-injective S-
systems. Feller and Gantos [3] showed that a semigroup S is an
inverse semigroup with zero and the set E(S) of all idempotents of S
is dually well-ordered if and only if every right and left S-system over
S is injective. In this paper, we want to find a relationship between
the regular semigroup S and the S-system M over S.

2. Notations and Preliminaries

DEFINITION 2.1: An element a in a semigroup S is called regular
if there is an element = in S such that aza = a. If all elements of S
are regular we call S a regular semigroup.

We note that if aza = a, then e = az is an idempotent element of S
such that ea = a. Similarly, f = za is an idempotent such that af =
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a. The regularity for ring was introduced first by J. Von Neumann
for ring [6]. It plays an important role in semigroup theory.

DEFINITION 2.2: A non-empty set M is a (right) S-system over a
semigroup S if there is a map (z,s) — zs from M x S into M with
the properties (zs)t = z(st) for all z € M, s, t € S. If S has identity
element 1, it satisfies z1 = = for x € M. By centered S-system M over
a semigroup S, we mean an S-system containing an unique singleton
element z such that za = z for all a € S. We call an such element z
as zero and it is denoted by 0

If M is centered and S has 0, then z0 is clearly a zero element of M.
Since we can consider S-system M as unary algebra with operations as
many as S, we can use the notation of universal algebra. For example,
S-subsystem and homomorphism of S-systems are the same as those
of universal algebra.

DEFINITION 2.3: A congruence K on an S-system M over S is an
equivalence relation on M such that whenever (m,n) € K implies

(ms,ns) € K for all s € S. The identity congruence of M will be
denoted by 1.

THEOREM 2.4. If f is a homomorphism from S-system A into S-
system B, then the relation Ker f = {(z,y) | f(z) = f(y)} is a
congruence on A. If we define a function g : A/ ker f — B by ¢(Z) =

(:c) for all z € A/ ker f, then the following diagram commutes, Where
7 is a natural projection.

A Il .pB
wl /‘g

Al ker f

PROOF: See [7, Theorem 5.3].

DEFINITION 2.5: An S-subsystem N of M is called large if for any
homomorphism f from M into any S-system C, f itself is injective
whenever the restriction of f on N is injective. Also we call M an
essential extension of N.
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THEOREM 2.6. M is an essential extension of N if and only if for
any congruence K of M, KN (N x N) = 1y implies K = 1.

Proor: “If part”. Let f : M — K be an homomorphism such that
the restriction of f on N is injective. From the above Theorem 2.4,
Ker f is a congruence on M. If (z,y) € Ker fN (NN x N), then f(z) =
f(y) for all z, y € N. Since f is injective, we have z = y. This means
that Ker f N (N x N) =1y and so Ker f = 157. Thus f is injective.

“only if part”. Conversely, assume that K is not identity congruence
of M. Then there are z, y in M such that (z,y) € K, ¢ # y. The
natural projection 7 : M — M/K by n(m) = {z € M | (m,z) € K}
is not one to one. Thus from the definition of essential extension,
the restriction of # on N is not one to one. Hence there are a, b in
N such that n(a) = n(b), a # b. Since Kerm = K, we have that
KN(N xN)#1n.

DEFINITION 2.7: An S-system I is injective if for any one to one

homomorphism f : A — B and for any homorphism h : A — I, there

is a homomorphism ¢ : B — I such that gf = h for any S-systems A,
B.

We can easily prove that an S-system I is injective if and only if
I has no proper essential extension [1]. In ring and module theory,
the following theorem is very useful for checking if given module M
is injective or not.

THEOREM 2.8(Baer). An R-module M is injective if and only if
for any right ideal K of a ring R and for every f € Hompg(K, M),
there exists an element m in M such that f(k) = mk for allk € K.

PROOF: See [6, Lemma 1].

If we exchange a ring R into a semigroup S, then the module M
becomes an S-system. Also the above Bare criterion was supposed
to hold on S-system. But C.V. Hinkle, Jr [4] found that the above
Theorem 2.8 does not hold for S-system except some special case.
So he defined a weakly injective S-system. Since we want to find a
relationship between S-system and regular semigroup S, we need the
following definition.

DEFINITION 2.9: Let M be an S-system and a € M. Then the set
aS = {azx | z € S} is called a cyclic S-system of M. If there exists an
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element m in M such that M = mS, then we call M a cyclic S-system
and such element m is called a generator of M. Also we define the
set aS! = {az | z € S} U {a}. If S has an identity element 1, then
aS! = aS.

DEFINITION 2.10: An S-system M is called c-injective if and only
if for every principal right ideal K of S and for any homomorphism
f : K — M, there is an element m in M such that f(s) = ms for all
s€EK.

If we put S itself as an S-system M, the cyclic S-subsystem aS
becomes a principal right ideal of S.
For any S-system M, we denote the sets

P(V)={s€ S |us=wvsforall (u,v) €V C M x M},
P(N)={(u,v) € Sx S|yu=yvforally e N C M},
Y(U)={m € M | mu=mv for all (u,v) €U C S x S},
Y(T)={(u,v) E M x M |ut=vtforallt € T C S}.

DEFINITION 2.11([4]): For a centered S-system M over a semi-
group S with 0. An S-subsystem A of M is called meet-large if the
intersection of A with any non-zero S-subsystem N of M is always
non-zero.

In ring theory, there is a one to one correspondence between the set
of ideals and the set of congruences. But for an S-system M over a
semigroup S with 0, the above property does not hold in general. It
is clear that B is a meet-large S-system of A if and only if 5SN B # 0
for all nonzero b of A.

THEOREM 2.12. Let M be a centered S-system over a semigroup
S with 0. If M is an essential extension of N, then zS* N N # 0 for
all nonzero ¢ € M.

PROOF: Let K = (zS! x 2S') U 1. Then K is a congruence re-
lation of M and K # 1y, since (,0) € K. Hence from Theorem 2.6,
we have K N (N X N) # 1n. So there is (a,b) € K N (N x N) satis-
fying a # b. Since KN(N x N) = [(zS* x zSY)U1y]N(N x N) =
[(zS* x 2ST)N(N x N)]Uly = [(2S* N N) x (2SN N)] U 1n, we
have |£S* N N| > 2. Therefore zS* N N # 0.



INJECTIVE S—SYSTEMS AND REGULAR SEMIGROUPS 5

COROLLARY 2.13. Every large S-subsystem N of M is meet-large
in M.

DEFINITION 2.14: For a centered S-system M over a semigroup S
with 0, the set Z(M) = {(m,n) € M x M | ms = ns for all s in some
meet-large right ideal of S} is called a singular relation of M. M is
called non-singular if Z(M) = 1p, M is called singular if Z(M) =
M x M. Semigroup S is called right non-singular if S itself is non-
singular when we consider S as S-system.

THEOREM 2.15. For a centered S-system M over a semigroup S
with 0, the set {(m,n) € M x M | P(m,n) is a meet-large right ideal
of S} is a singular relation of M.

PROOF: If P(m,n) is a meet-large right ideal of S, then we can
consider P(m,n) is a meet-large subsystem of S-system S itself. So
mz = nz for all € P(m,n). Since P(m,n) is meet-large, we get
(m,n) € Z(M) by definition of Z(M). Conversely, if (m,n) € Z(M),
then (m,n) € Y(K) for some meet-large right ideal K of S. So
K C P(Y(K)) C P(m,n). Since K is a meet-large right ideal of S.
By Theorem 2.12 and Corollary 2.13, we can easily prove that P(m,n)
is also a meet-large subsystem of the S-system S.

THEOREM 2.16. Let M be a centered S-system over a semigroup
S with 0, 1. Then M is non-singular if and only if for any relation T
of M. P(T) is not proper meet-large in S.

PROOF: Let P(T) be a meet-large subsystem of N, N C S. For
any n € N, defineamap f: S — N by f(z) =nzforallz € S. Then
f71(P(T)) is also meet-large in S, since the preimage of a meet-large
set is also meet-large [4]. For any z € f~!(P(T)), we have anz = bnz
for all (a,b) € T, and hence f~}(P(T)) C P(an,bn) for all (a,b) € T.
So P(an,bn) is a meet-large right ideal of S. By Theorem 2.15, we
get an = bn and so n € P(T). This means that N = P(T).

Conversely, if P(a,b) is a meet-large right ideal of S, then az = bz
for all z. Hence a = b and so M is non-singular.

3. Main Results

THEOREM 3.1. Every right ideal of a semigroup S is generated by
idempotent element of S if and only if for any S-system M, any right
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ideal I of S and for any homomorphism f : I — M, there is an
element m in M such that f(s) = ms for all s € I.

PROOF: “if part”. Let I be any right ideal of S. If we define a
function f as an identity function of I, then there exists m in I such
that mz = z for all z € I. Therefore if we put £ = m, then we have
m = mm. Consequently we have that I = mS.

“only if part”. For any S-system M and for any right ideal I of
S, I = eS for some idempotent € of S. Let f : I — M be any
homomorphism. If we put f(e) = m, then f(ex) = f(eex) = f(e)ex =
mez for all z € S.

COROLLARY 3.2. If every right ideal of a semigroup S is generated
by idempotent element, then any S-system M is c-injective.

THEOREM 3.3. A semigroup S is regular if and only if every S-
system M over S is c-injective.

PROOF: Let a be any element of S. Then aS” is a principal right
ideal of S. For the identity map f : aS* — aS?, there is an element
m in aS such that as = mas for all s € S'. Thus a = ma = (az)a for
some z € St.

Conversely, for any S-system M and for any principal right ideal
aS! of S, we have aS! = eS for some idempotent e of S, since S is
regular ([2], Lemma 1.13). For any homomorphism f : eS — M, if
we put f(e) = m, then f(es) = f(ees) = mes for all s € S. Thus M

is a c-injective S-system.

It is easy to show that if e is an idempotent element of S, then the
principal right ideal €S is equal to P(T') for some subset T of S x S.
In fact eS = P(Y(e)). But for any subset T of S x S, P(T) is not of
the form eS. But there are many semigroup having the property that
for any relation T of S, P(T) is a principal right ideal generated by
an idempotent element of S.

THEOREM 3.4. An S-system M is a c-injective if and only if Mz =
Y(P(z)) for all z € S.

PrROOF: “if part”. Let u € Y(P(:z:)) Define amap f: 25 - M
by f(zs) = us for all s of S. Then the map f is well defined, since
ra = zb implies (a,bd) € P(z). By the fact M is c-injective, there is
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an element m in M such that f(zs) = m(zs) for all s € S. Thus
u = ul = f(z1) = mz € Mz. Converse inclusion Mz C Y(P(z)) can
be proved easily. So we have Mz = Y (P(z)) for all z € S.

“only if part”. Let f : S — M be any homomorphism, = € S.
Then for any (s,t) € P(z), f(z)s = f(zs) = f(z)t. Thus f(z) €
Y(P(z)) = Mz and so f(z) = mz for some m € M.

COROLLARY 3.5. A semigroup S is regular if and only if for any
S-system M, Mz =Y (P(z)) forallz € S.

THEOREM 3.6. Let B be a subsystem of an S-system A. If K is
a maximal element of the set {C' | C is a congruence of A such that
C N (B x B) = 1}, then B/K is a large subsystem of A/K and
isomorphic to B.

PROOF: See [1, Theorem 8§].

THEOREM 3.7. If M is a subsystem of an injective S-system I,
then the followings are pairwise equivalent:

1) M is injective.

2) There is a congruence relation K on I such that M = I/K
and the 7|y is an isomorphism, where = : I — I/K is the natural
projection.

3) For some S-system B, there is a homorphism h : I — B such
that M is maximal in the set {A | h|4 is one to one}.

PROOF: 1) implies 2). By Theorem 3.6, there is a congruence re-
lation K of I such that M = M/K and M/K is a large subsystem
of I/K. Let ¢ = (7|mM)~! : M/K — M be an isomorphism. Since
M is injective, there is a homomorphism f : I/K — M such that the
restriction of f on set M/K is equal to g. Since M/K is a large sub-
system of I/K, f is one to one. For any « € I/K, there is an element
m in M/K such that f(z) = g(m) = f(m), since ¢ = f on the set
M/K. Thus I/K = M/K and the natural projection 7 : I — I/K
has the property that the restriction of 7 on set M is an isomorphism.

2) implies 3). Let ¢ : M — I/K be an isomorphism. If we define
f M — Iby f(m) = (r|m)~1(i(m)), then it is obvious that f
is an isomorphism and 7 o f = i. Since I is injective, there is a
homomorphism f' : I — I such that f'|yy = f. Let h = 7o f'. If
h(a) = h(b) for a, b € M, we have i(a) = w o f'(a) = 7 o f(b) = i(b).
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Since 7 is one to one, a = b. Thus h|p is also one to one. If N is
any subsystem of I containing M properly, then there is an element
n in N such that n is not in M. Since h(n) € I/K, there is m in M
such that h(n) = i(m). Since i(m) = 7 o f(m) = o f'(m) = h(m),
h|n is not one to one. Thus M is a maximal element of the set
{A | h|a is one to one}.

3) implies 1). Suppose that there is a homomorphism A : I — B
such that M is maximal in the set {A | h|4 is one to one}. Let M’
be the injective hull of M. Since I is injective, we have that M' C I.
Let g = h|p : M' — B. Since M’ is an essential extension of M, g
is also one to one. From the maximality of M, we have M = M' and
so M is injective.

COROLLARY 3.8. Let a semigroup S be self injective. A right ideal
I of S is injective if and only if I = €S for some idempotent e of S.

PROOF: For any element a of S, the map f, : S — S by f.(z) =
az is called a left translation of S corresponding a. Let e be an
idempotent element of S. For any z, y € eS, fe(z) = fe(y) implies

= y and so fe|es is one to one. If f is one to one and eS C
M C S, then for any m € M, f.(m) = em = eem = f.(em). Since
em € eS C M, e = em. So we have that eS is maximal in the set
{fe|m is one to one}. By Theorem 3.7, eS is injective.

Conversely, we know that S has a fixed element z, since every in-
jective S-system has a fixed element ([9], Proposition 4.4). Since I
is injective, there is a homomorphism h : S — I such that h|s is the

identity map of I. If we put h(z) = e, then e is an idempotent element
and so [ = eS.
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