• Title/Summary/Keyword: subsurface flow

Search Result 243, Processing Time 0.029 seconds

Saturated - Unsaturated Transient Subsurface Flow Model on a Hillslope

  • Choi, Eun-Ho;Nahm, Sun-Woo
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.13-24
    • /
    • 1991
  • The governing partial differential equation of flow in porous media is developed on the bases of the continuity equation of fluid for transient flow through a saturated-unsaturated zone, and substitution of Dercy's law. The numerical solution is obtained by the Galerkin finite element method based on the principle of weighted residuals. The analysis is carried out by using the unsteady storm data observed and the functional relationships between the hydraulic conductivities, capillary pressure heads, and volumetric water contents under saturated-unsaturated conditions. As the results the hydraulic conductivities, rates of change of storage and initial moisture conditions are significantly influened on the responses of subsurface flow on a hillslope.

  • PDF

Application of Grid-based Kinematic Wave Storm Runoff Model

  • Kim, Seong-Joon;Kim, Sun-Joo;Chae, Hyo-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.20-27
    • /
    • 2000
  • The grid-based KlneMatic wave STOrm Runoff Modei (Kim, 1998; Kim, et al., 1998) which predicts temporal variation and spatial distribution of saturated overland flow, subsurface flow and stream flow was evaluated at two watersheds. This model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each cell by using water balance of hydrologic components. The model programed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS (Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture of the watershed.

  • PDF

Rainfall-induced shallow landslide prediction considering the influence of 1D and 3D subsurface flows

  • Viet, Tran The;Lee, Giha;An, Hyunuk;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.260-260
    • /
    • 2017
  • This study aims to compare the performance of TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability model) and TiVaSS (Time-variant Slope Stability model) in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. The present study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( index), which was developed for addressing point-like landslide locations. In addition, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models have characteristics that are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30% to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

  • PDF

Validation of a new magnetometric survey for mapping 3D subsurface leakage paths

  • Park, DongSoon;Jessop, Mike L.
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.891-902
    • /
    • 2018
  • Techniques for more reliable detection of 3D subsurface flow paths are highly important for most water-related geotechnical projects. In this case study, a magnetometric resistivity method with a new approach and state-of-the-art technology ("Willowstick survey") was applied to the testbed dam (YD dam) site, and its applicability was validated by geotechnical investigation techniques including borehole drilling and sampling, Lugeon test, flow direction and velocity test, and seismic tomography. In addition to the magnetometric survey, a 3D electrical resistivity survey was performed independently and the results were compared and discussed. The electrical resistivity survey was effective in detecting groundwater levels, but it was limited in mapping leakage paths. On the other hand, the Willowstick magnetometric survey effectively detected geologic weaknesses (e.g., fault fracture) and potential leakage paths of the dam site foundation rocks. The results of this research are expected to be effective for water infrastructures where leakage is an important issue.

Analysis on the contaminant transport in subsurface soil at Daeduk site (대덕부지 토양내 오염물 이동 해석)

  • Suh, Kyung-Suk;Kim, Eun-Han;Hwang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.155-163
    • /
    • 2003
  • The groundwater flow and contaminant transport numerical models have been established for analyzing the movements of pollutants in subsurface soil at Daeduk site. The groundwater flow and concentration of U-234 using the numerical models were simulated around Daeduk nuclear facilities. The computed groundwater flow was mainly advected toward the direction of east and southeast around HANARO in the site. The radioactive material entered into the subsurface soil was transported along the same direction with groundwater flow. The radioactive material deposited on the surface from the calculated concentration distributions was not affected by surrounding environment of the site.

Comparison of Groundwater Recharge between HELP Model and SWAT Model (HELP 모형과 SWAT 모형의 지하수 함양량 비교)

  • Lee, Do-Hun;Kim, Nam-Won;Chung, Il-Moon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.383-391
    • /
    • 2010
  • The groundwater recharge was assessed by using both SWAT and HELP models in Bocheong-cheon watershed. The SWAT model is a comprehensive surface and subsurface model, but it lacks the physical basis for simulating a soil water percolation process. The HELP model which has a drawback in simulating subsurface lateral flow and groundwater flow component can simulate soil water percolation process by considering the unsaturated flow effect of soil layers. The SWAT model has been successfully applied for estimating groundwater recharge in a number of watersheds in Korea, while the application of HELP model has been very limited. The subsurface lateral flow parameter was proposed in order to consider the subsurface lateral flow effect in HELP model and the groundwater recharge was simulated by the modified exponential decay weighting function in HELP model. The simulation results indicate that the recharge of HELP model significantly depends on the values of lateral flow parameter. The recharge errors between SWAT and HELP are the smallest when the lateral flow parameter is about 0.6 and the recharge rates between two models are shown to be reasonably comparable for daily, monthly, and yearly time scales. The HELP model is useful for estimating groundwater recharge at watershed scale because the model structure and input parameters of HELP model are simpler than that of SWAT model. The accuracy of assessing the groundwater recharge might be improved by the concurrent application of SWAT model and HELP model.

A Subsurface Environment Management System Combining Computational Model and Spatial Information System (전산모형 및 공간정보시스템을 결합한 지하환경관리시스템의 개발 및 적용)

  • Kim, Joon-Hyun;Han, Young-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.99-108
    • /
    • 2001
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains numerical models and geographic information systems for underground flow and contamination. Multidimensional Finite Element Model for Subsurface Environment (MFEMSE) was invented to analyze underground flow and pollution problems of water and gas phases. Newly developed and conventional models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) were integrated with GIS (ArcView) for the construction of an integrated information management system of subsurface environment. This system was applied to the management of three mineral water companies located in clean high mountain basin. Desirable management criteria and operational strategies were suggested using this system. The system was constructed to be applied for the broad sense of decision supporting tools in related topics of this study, so that it can be used not only for the prevention regulations, but also for clean up projects.

  • PDF

Hydrological Characteristics of Subsurface Stormflow through Soil Matrix and Macropores on forested Hillslopes (산지 사면에서 토양체와 대공극을 통해 발생하는 지표하 호우류의 수문학적 특성)

  • Kim, Kyong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.777-785
    • /
    • 1997
  • This study was conducted to clarify the hydrological characteristics of subsurface flow through a soil matrix and macropores. The research facility was set up in a 20m-1ong trench excavated down to bedrock at the base of a hillslope in the Panola catchment under USGS Georgia district. 13 macropores were found on the trench face and 6 major macropores were monitored. Matrix and macropore flow were measured during 95.5mm rainfall on March, 6 to 7. 1996. Macropore flow had great influence on formation of peak flow because the delivery time to Peak flow of macropore flow were faster about 10hrs than those of matrix flow. Matrix flow continued to recess for 3 days. On the other hand, macropore flow stopped within 12hrs after the event ceased. This means that matrix flow controls the recession part. The spatial variations of matrix and macropore flow between each trough and collector were very large by a wide range of 8,655.3 $\ell$ to 17.8 $\ell$ . The bed rock surface topography relates closer with the spatial variations of the flow than the surface one.

  • PDF

Performance Study on Pilot-scale Constructed Wetlands in order to Restore Contaminated Stream (오염하천의 정화를 위한 파일럿 규모의 인공습지 적용)

  • Kim, Seung-Jun;Choi, Yong-Su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.546-556
    • /
    • 2006
  • The purpose of this study is to improve the polluted stream water quality by pilot-scale five different constructed wetlands (CWs). Cell 1 to 3 are newly designed 2SFCW (Surface-subsurface flow CW) with 1 to 3 flow shifters (FS) in the middle of the wetland system. Cell 4 and 5 are control CW (CCW), but Cell 5 is the same type as Cell 3. The FS, which converts the route of surface and subsurface flow between two wetlands connected in series, was able to enhance the treatability of TN via nitrification and denitrification and of SS due to filtration and sedimentation. The void fraction and dispersion number of Cell 1, 2 and 3 obtained from the RTD analysis were found to be 0.73 and 0.17, respectively. COD and TP removal efficiencies of Cell 1 to 3 were similar to that of Cell 4 and 5. SS removal efficiencies of Cell 1 to 3 and 5 with FS were 5-10% higher than that of Cell 4 without FS. TN removal efficiencies of Cell 1 to 3 were 3-14% higher than that of Cell 4 and 5. The average $R^2$ values of COD, SS, TN and TP obtained from nonlinear regression analysis were similar to the results of other researchers.