• Title/Summary/Keyword: subsurface

Search Result 1,544, Processing Time 0.033 seconds

A Study of Disposition of Archaeological Remains in Wolseong Fortress of Gyeongju : Using Ground Penetration Radar(GPR) (GPR탐사를 통해 본 경주 월성의 유적 분포 현황 연구)

  • Oh, Hyun Dok;Shin, Jong Woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.306-333
    • /
    • 2010
  • Previous studies on Wolseong fortress have focused on capital system of Silla Dynasty and on the recreation of Wolseong fortress due to the excavations in and around Wolseong moat. Since the report on the Geographical Survey of Wolseong fortress was published and GPR survey in Wolseong fortress was executed as a trial test in 2004, the academic interest in the site has now expanded to the inside of the fortress. From such context, the preliminary research on the fortress including geophysical survey had been commenced. GPR survey had been conducted for a year from March, 2007. The principal purpose of the recent 3D GPR survey was to provide visualization of subsurface images of the entire Wolseong fortress area. In order to obtain 3D GPR data, dense profile lines were laid in grid-form. The total area surveyed was $112,535m^2$. Depth slice was applied to analyse each level to examine how the layers of the remains had changed and overlapped over time. In addition, slice overlay analysis methodology was used to gather reflects of each depth on a single map. Isolated surface visualization, which is one of 3D analysis methods, was also employed to gain more in-depth understanding and more accurate interpretations of the remain The GPR survey has confirmed that there are building sites whose archaeological features can be classified into 14 different groups. Three interesting areas with huge public building arrangement have been found in Zone 2 in the far west, Zone 9 in the middle, and Zone 14 in the far east. It is recognized that such areas must had been used for important public functions. This research has displayed that 3D GPR survey can be effective for a vast area of archaeological remains and that slice overlay images can provide clearer image with high contrast for objects and remains buried the site.

The Hydrochemistry of ChusanYongchulso Spring, Cheonbu-ri, Buk-myeon, Northern Ulleung Island (울릉도 북면 천부리 추산 용출소의 수질화학적 특성)

  • Lee, Byeong Dae;Cho, Byong Wook;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.565-582
    • /
    • 2018
  • We investigated the hydrochemical properties of ChusanYongchulso Spring located in Buk-myeon, Ulleung Island, focusing on the formation and characteristics of aquifers in and around the Nari caldera. Abundant pumice with high permeability and numerous fractures (including faults and joints) that formed as a result of caldera subsidence are widely distributed in the subsurface, favoring the formation of aquifers. Because of the presence of porous pyroclastic rocks with a high internal surface area, the water type of the springs is characterized by $NaHCO_3$, with upper stream waters and the upper spring being characterized by $NaHCO_3$ and NaCl, respectively. Components with a high coefficient of determination with EC are $HCO_3$, Na, F, Ca, Mg, Cl, $SiO_2$, and $SO_4$. The high concentrations of Na and Cl might be attributable to the main lithologies in the area, given that alkaline volcanic rocks are distributed extensively across Ulleung Island. Eh and pH, which are considered to be important indicators of water-rock interaction, are unrelated to most components. According to the results obtained from factor analysis, the variance explained by factor 1 is 54% and by factor 2 is 25.8%. Components with a high loading on factor 1 are F, Na, EC, Cl, $HCO_3$, $SO_4$, $SiO_2$, Ca, $NO_3$, and Mg, whereas components with a high loading on factor 2 are Mg and Ca, along with K, $NO_3$, and DO with negative loadings. It is suggested that the high concentrations of Na, Cl, F, and $SO_4$ are closely related to the presence of fine-grained alkaline pyroclastic rocks with high permeability and porosity, which favorintensewater-rock interaction. However, a wide-ranging investigation that encompasses methods such as geophysical prospecting and geochemical analysis (including isotope, trace-element, and tracer techniques) will be necessary to gain a better understanding of the groundwater chemistry, aquifer distribution, and water cycling of Ulleung Island.

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

Analysis of Surface Displacement of Oil Sands Region in Alberta, Canada Using Sentinel-1 SAR Time Series Images (Sentinel-1 SAR 시계열 영상을 이용한 캐나다 앨버타 오일샌드 지역의 지표변위 분석)

  • Kim, Taewook;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • SAGD (Steam-Assisted Gravity Drainage) method is widely used for oil recovery in oil sands regions. The SAGD operation causes surface displacement, which can affect the stability of oil recovery plants and trigger various geological disasters. Therefore, it isimportant to monitor the surface displacement due to SAGD in the oil sands region. In this study, the surface displacement due to SAGD operations of the Athabasca oil sands region in Alberta, Canada, was observed by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique to the Sentinel-1 time series SAR data acquired from 2016 to 2021. We also investigated the construction and expansion of SAGD facilitiesfrom Landsat-7/8 time seriesimages, from which the characteristics of the surface displacement according to the oil production activity of SAGD were analyzed. Uplift rates of 0.3-2.5 cm/yr in the direction of line of sight were observed over the SAGDs and their vicinity, whereas subsidence rates of -0.3--0.6 cm/yr were observed in areas more than several kilometers away from the SAGDs and not affected by oil recovery activities. Through the analysis of Landsat-7/8 images, we could confirm that the SAGDs operating after 2012 and showing high oil production activity caused uplift rates greater than 1.6 cm/yr due to the subsurface steam injection. Meanwhile, very small uplift rates of several mm per year occurred over SAGDs which have been operated for a longer period of time and show relatively low oil production activity. This was probably due to the compression of reservoir sandstone due to continuous oil recovery. The subsidence observed in areas except for the SAGDs and their vicinity estimated to be a gradual land subsidence caused by melting of the permafrost. Considering the subsidence, it was expected that the uplift due to SAGD operation would be greater than that observed by the PSInSAR. The results of this study confirm that the PSInSAR can be used as an effective means for evaluating productivity and stability of SAGD in the extreme cold regions.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.