DOI QR코드

DOI QR Code

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea

장기분지 데사이트질 응회암의 불석화작용

  • Kim, Jinju (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jeong, Jong Ok (Center for Research Facilities, Gyeongsang National University) ;
  • Shinn, Young-Jae (Division of Convergence on Marine Science, Korea Maritime and Ocean University) ;
  • Sohn, Young Kwan (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 김진주 (경상국립대학교 지질과학과) ;
  • 정종옥 (경상국립대학교 공동실험실습관) ;
  • 신영재 (한국해양대학교 해양과학융합학부) ;
  • 손영관 (경상국립대학교 지질과학과)
  • Received : 2021.11.24
  • Accepted : 2022.02.25
  • Published : 2022.02.28

Abstract

Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

이산화탄소 지중저장 가능성 평가를 위해 시추한 결과, 장기분지 성동리층에 97~118m 두께의 데사이트질 응회암이 확인되었으며 내부구조와 입자조성에 따라 4개의 퇴적단위(퇴적단위 1~4)로 구분되었다. 퇴적단위 1은 육성환경, 퇴적단위 3, 4는 수중 환경에서 쌓인 화쇄류암(ignimbrite)이며, 퇴적단위 2는 화산휴지기에 쌓인 망상하천 퇴적암으로 데사이트질 응회암이 관찰되지 않는다. 박편분석결과, 모데나이트, 클리놉틸로라이트는 주로 유리를 교대하거나 기공을 충전하며 매몰-속성과정 동안 화산유리의 교대작용 및 용해-침전작용으로 생성된 것으로 보인다. 클리놉틸로라이트는 퇴적단위 3에서 유리를 교대하는 경우가 기공을 충전한 경우보다 Si/Al비와 Na함량이 높으며 퇴적단위 4에서는 산출상태 및 지역에 상관없이 조성이 동일해 지는데, 이는 화산유리의 교대 및 용탈작용이 진행될수록 공극수의 Si/Al비와 pH가 증가했으며, 퇴적단위 3의 클리놉틸로라이트가 생성될 당시 동-서쪽의 공극수 조성이 달랐음을 지시한다. 또한, 모데나이트의 성장이 끝난 후 클리놉틸로라이트가 생성되었으며, 두 불석광물은 각 퇴적단위별로 순차적으로 생성된 것으로 해석된다. 종합해보면, 퇴적단위 1이 쌓인 후, 화산휴지기 동안 서고동저의 분지지형으로 인해 서쪽은 pH가 더 높았으나 스멕타이트의 성장으로 공극이 폐쇄되어 더 이상 불석광물 이 성장하지 못한 반면, 동쪽은 망상하천이 발달한 개방계 상태에서 지하수의 영향을 받아 클리놉틸로라이트가 성장할 수 있었던 것으로 보인다. 이후 분지의 침강으로 퇴적단위 3, 4는 수중환경으로 변화였고 공극수는 점점 알칼리함량이 증가하여 결국 동-서쪽의 공극수 조성이 동일해 진 것으로 해석되었다. 이와 같이 유사한 조성의 응회암에서도 분지의 수계와 퇴적환경에 따라 다양한 불석광물이 공간적으로 다르게 분포할 수 있음을 보여준다.

Keywords

Acknowledgement

이 연구는 2014년도 정부(미래창조과학부)의 재원으로 (재)한국이산화탄소포집및처리연구개발센터의지원(NRF-2014M1A8A1049342)을 받아 수행되었다. 논문에 대해 건설적인의견을제시해주신익명의 심사자들께감사드린다.

References

  1. Ambruster, T. and Gunter, M.E. (2001) Crystal structures of natural zeolites. Reviews in Mineralogy and Geochemistry, v.45, p.1-67. https://doi.org/10.2138/rmg.2001.45.1
  2. Benning, L.G., Wilkin, R.T. and Barnes, H.L. (2000) Solubility and stability of zeolites in aqueous solution: II. Calcic clinoptilolite and mordenite. American Mineralogist, v.85, p.495-508. https://doi.org/10.2138/am-2000-0411.
  3. Brathwaite, R.L. (2003) Geological and mineralogical characterization of zeolites in lacustrine tuffs, Ngakuru, Taupo Volcanic Zone, New Zealand, Clays and Clay Minerals, v,51, 6, p.589-598. https://doi.org/10.1346/CCMN.2003.0510601.
  4. Chipera, S.J. and Apps, J.A. (2001) Geochemical Stability of Natural Zeilites. Reviews in Mineralogy and Geochemistry, v.45, p.117-161. https://doi.org/10.2138/rmg.2001.45.3.
  5. Choi, Y.-S. and Kim, S.J. (1993) Occurrence and Genesis of Zeolites from the Tertiary Volcanic Sediments in the Guryongpo Area, Korea. The Mineralogical Society of Korea, v.6, p.38-47.
  6. Deer, W.A., Howie, R.A. and Zussman, J. (2013) Rock-forming minerals. Third edition: Mineralogical Society. doi: 10.1180/DHZ
  7. Deffeyes, K.S. (1959) Zeolites in Sedimentary rock. Journal of Sedimentary Petrology, v.29, 4, p.602-609. https://doi.org/10.1306/74D709AC-2B21-11D7-8648000102C1865D.
  8. Gim, J.H., Jeong, J.O., Gihm, Y.S., Gu, H.-C. and Sohn, Y.K. (2016) Depositional environments and processes of the subsurface dacitic volcaniclastic deposits in the Miocene Janggi Basin, SE Korea. Journal of the Geological Society of Korea, v.52, p.775-798. doi: 10.14770/jgsk.2016.52.6.775
  9. Gottardi, G. and Galli, E. (1985) Natural Zeolites, Springer, Berlin, p.93-284. doi: 10.1007/978-3-642-46518-5
  10. Gottardi, G. (1989) The genesis of zeolites. European Journal of Mineralogy, v.1, 4, p.479-488. doi: 10.1127/ejm/1/4/0479
  11. Hay, R.L. (1966) Zeolites and zeolitic reactions in sedimentary rocks, The Geological Society of America, Inc. doi: 10.1130/SPE85-p1
  12. Kirov, G., Samajova, E., Nedialkov, R. and Stanimirova, T.S. (2011) Alteration processes and products of acid pyroclastic rocks in Bulgaria and Slovakia. Clay Minerals, v.46, p.279-294. https://doi.org/10.1180/claymin.2011.046.2.279.
  13. Kim, M.-C., Gihm, Y.S., Son, E.-Y., Son, M., Hwang, I.G., Shinn, Y.J. and Choi, H.S. (2015) Assessment of the potential for geological storage of CO2 based on structural and sedimentologic characteristics in the Miocene Janggi Basin, SE Korea. Journal of the Geological Society of Korea, v.51, p.253-271. doi: 10.14770/jgsk.2015.51.3.253
  14. Kim, M.-C., Kim, J.-S., Jung, S.H., Son, M. and Sohn, Y.K. (2011) Bimodal Volcanism and Classification of the Miocene Basin Fill in the Northern Area of the Janggi-myeon, Pohang, Southeast Korea. Journal of the Geological Society of Korea, v.47, p.585-612.
  15. Noh, J.H. (1989) Zeolitization of Tertiary Formations in Janggi Area. Journal of the Geological Society of Korea, v.25, p.30-43.
  16. Pabalan. R.T. and Bertetti, F.P. (2001) Cation-Exchange Properties of Natural Zeolites. Reviews in Mineralogy and Geochemistry, v.45, p.453-518. https://doi.org/10.2138/rmg.2001.45.14.
  17. Passaglia, E. and Sheppard, R.A. (2001) The Crystal Chemistry of Zeolites. Reviews in Mineralogy and Geochemistry, v.45, p.69-116. https://doi.org/10.2138/rmg.2001.45.2.
  18. Sheppard, R.A. and Hay, R.L. (2001) Formation of Zeolites in Open Hydrologic Systems. Reviews in Mineralogy and Geochemistry, v.45, p.261-275. https://doi.org/10.2138/rmg.2001.45.8.
  19. Sheppard, R.A. and Hay, R.L. (2001) Occurrence of Zeolites in Sedimentary Rocks: An Overiew. Reviews in Mineralogy and Geochemistry, v.45, p.217-234. doi: 10.2138/rmg.2001.45.6
  20. Son, M., Song, C.W., Kim, M.-C., Cheon, Y.B., Jung, S.H., Cho, H.S., Kim, H.-G., Kim, J.S. and Sohn, Y.K. (2013) Miocene Crustal Deformation, Basin Development, and Tectonic Implication in the Southeastern Korean Peninsula. Journal of the Geological Society of Korea, v.49, p.93-118. doi : 10.14770/jgsk.2013.49.1.93