Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.6.727

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges  

Subon Ko (Department of Earth System Sciences, Yonsei University)
Jinho Ahn (School of Earth and Environmental Sciences, Seoul National University)
Alexandre Fedorov (Melnikov Permafrost Institute, Russian Academy of Science)
Giehyeon Lee (Department of Earth System Sciences, Yonsei University)
Publication Information
Economic and Environmental Geology / v.55, no.6, 2022 , pp. 727-736 More about this Journal
Abstract
Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.
Keywords
ice wedge; thawing conditions; paleoclimate; paleoenvironment; sample pretreatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brouchkov, A., Fukuda, M., Fedorov, A., Konstantinov, P. and Iwahana, G. (2004). Thermokarst as a short-term permafrost disturbance, Central Yakutia. Permafrost and Periglacial Processes, v.15(1), p.81-87. doi: 10.1002/ppp.473.   DOI
2 Campbell-Heaton, K., Lacelle, D. and Fisher, D. (2021). Ice wedges as winter temperature proxy: Principles, limitations and noise in the δ18O records (an example from high Arctic Canada). Quaternary Science Reviews, v.269, 107135. doi: 10.1016/j.quascirev.2021.107135.   DOI
3 Chartier, M., Mercier, G. and Blais, J.F. (2001). Partitioning of trace metals before and after biological removal of metals from sediments. Water Research, v.35(6), p.1435-1444. doi: 10.1016/S0043-1354(00)00404-8.   DOI
4 Cho, Y.M., Ghosh, U., Kennedy, A.J., Grossman, A., Ray, G., Tomaszewski, J.E., Smithenry, D.W., Bridges, T.S. and Luthy, R.G. (2009). Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment. Environmental science & technology, v.43(10), p.3815-3823. doi: 10.1021/es802931c.   DOI
5 Fedorov, A.N., Gavriliev, P.P., Konstantinov, P.Y., Hiyama, T., Iijima, Y. and Iwahana, G. (2014). Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology, v.7(2), p.188-196. doi: 10.1002/eco.1378.   DOI
6 Iizuka, Y., Miyamoto, C., Matoba, S., Iwahana, G., Horiuchi, K., Takahashi, Y., Kanna, N., Suzuki, K. and Ohno, H. (2019). Ion concentrations in ice wedges: An innovative approach to reconstruct past climate variability. Earth and Planetary Science Letters, v.515, p.58-66. doi: 10.1016/j.epsl.2019.03.013.   DOI
7 Boereboom, T., Samyn, D., Meyer, H. and Tison, J.L. (2013). Stable isotope and gas properties of two climatically contrasting (Pleistocene and Holocene) ice wedges from Cape Mamontov Klyk, Laptev Sea, northern Siberia. The Cryosphere, v.7(1), p.31-46. doi: 10.5194/tc-7-31-2013.   DOI
8 Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D.R., Moskalenko, N., Brown, J., Walker, D.A., Raynolds, M.K. and Buchhorn, M. (2017). Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska. Geomorphology, v.297, p.20-42. doi: 10.1016/j.geomorph.2017.09.001.   DOI
9 Kim, K., Yang, J.W., Yoon, H., Byun, E., Fedorov, A., Ryu, Y. and Ahn, J. (2019). Greenhouse gas formation in ice wedges at Cyuie, central Yakutia. Permafrost and Periglacial Processes, v.30(1), p.48-57. doi: 10.1002/ppp.1994.   DOI
10 Larese-Casanova, P., Kappler, A. and Haderlein, S.B. (2012). Heterogeneous oxidation of Fe (II) on iron oxides in aqueous systems: Identification and controls of Fe (III) product formation. Geochimica et Cosmochimica Acta, v.91, p.171-186. doi: 10.1016/j.gca.2012.05.031.   DOI
11 Lachenbruch, A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost (Vol. 70). Geological Society of America. doi: 10.1130/SPE70   DOI
12 Masse, G., Belt, S.T., Crosta, X., Schmidt, S., Snape, I., Thomas, D.N. and Rowland, S.J. (2011). Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean. Antarctic Science, v.23(5), p.487-498. doi: 10.1017/S0954102011000381.   DOI
13 Meyer, H., Schirrmeister, L., Yoshikawa, K., Opel, T., Wetterich, S., Hubberten, H.W. and Brown, J. (2010a). Permafrost evidence for severe winter cooling during the Younger Dryas in northern Alaska. Geophysical Research Letters, v.37(3). doi: 10.1029/2009GL041013.   DOI
14 Meyer, H., Schirrmeister, L., Andreev, A., Wagner, D., Hubberten, H.W., Yoshikawa, K., Bobrov, A., Wetterich, S., Opel, T., Kandiano, E. and Brown, J. (2010b). Lateglacial and Holocene isotopic and environmental history of northern coastal Alaska-Results from a buried ice-wedge system at Barrow. Quaternary Science Reviews, v.29(27-28), p.3720-3735. doi: 10.1016/j.quascirev.2010.08.005.   DOI
15 Namgung, S., Chon, C.M. and Lee, G. (2018). Formation of diverse Mn oxides: a review of bio/geochemical processes of Mn oxidation. Geosciences Journal, v.22(2), p.373-381. doi: 10.1007/s12303-018-0002-7.   DOI
16 Ravel, B. and Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of synchrotron radiation, v.12(4), p.537-541. doi: 10.1107/S0909049505012719.   DOI
17 Opel, T., Meyer, H., Wetterich, S., Laepple, T., Dereviagin, A. and Murton, J. (2018). Ice wedges as archives of winter paleoclimate: A review. Permafrost and Periglacial Processes, v. 29(3), p. 199-209. doi: 10.1002/ppp.1980.   DOI
18 Rounds, S.A. and Wilde, F.D. (2012). Chapter A6. Section 6.6. Alkalinity and acid neutralizing capacity (No. 09-A6. 6). US Geological Survey. doi: 10.3133/twri09A6.6.   DOI
19 Schirrmeister, L., Siegert, C., Kuznetsova, T., Kuzmina, S., Andreev, A., Kienast, F., Meyer, H. and Bobrov, A. (2002). Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quaternary International, v.89(1), p.97-118. doi: 10.1016/S1040-6182(01)00083-0.   DOI
20 Opel, T., Dereviagin, A.Y., Meyer, H., Schirrmeister, L. and Wetterich, S. (2011). Palaeoclimatic Information from Stable Water Isotopes of Holocene Ice Wedges on the Dmitrii Laptev Strait, Northeast Siberia, Russia. Permafrost and Periglacial Processes, v.22(1), p.84-100. doi: 10.1002/ppp.667.   DOI
21 Sowers, T.D., Wani, R.P., Coward, E.K., Fischel, M.H., Betts, A.R., Douglas, T.A., Duckworth, O.W. and Sparks, D.L. (2020). Spatially resolved organomineral interactions across a permafrost chronosequence. Environmental science & technology, v.54(5), p.2951-2960. doi: 10.1021/acs.est.9b06558.   DOI
22 Streletskaya, I.D., Vasiliev, A.A., Oblogov, G.E. and Tokarev, I.V. (2015). Reconstruction of paleoclimate of Russian Arctic in the Late Pleistocene-Holocene on the basis of isotope study of ice wedges. Earth's Cryosphere, v.19(2), p.98-106.
23 Vasil'chuk, Y.K. and Budantseva, N.A. (2021). Holocene ice wedges of the Kolyma Lowland and January paleotemperature reconstructions based on oxygen isotope records. Permafrost and Periglacial Processes, v.33(1), p.3-17. doi: 10.1002/ppp.2128.   DOI
24 Yang, J.W., Ahn, J., Iwahana, G., Ko, N., Kim, J.H., Kim, K., Fedorov, A. and Han, S. (2022). Origin of CO2, CH4, and N2O trapped in ice wedges in central Yakutia and their relationship. Permafrost and Periglacial Processes. doi: 10.1002/ppp.2176.   DOI
25 White, P.A., Kalff, J., Rasmussen, J.B. and Gasol, J.M. (1991). The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial ecology, v.21(1), p.99-118. doi: 10.1007/BF02539147.   DOI
26 Yang, J.W., Ahn, J., Iwahana, G., Han, S., Kim, K. and Fedorov, A. (2020). Brief Communication: The reliability of gas extraction techniques for analysing CH 4 and N 2 O compositions in gas trapped in permafrost ice wedges. The Cryosphere, v.14(4), p.1311-1324. doi: 10.5194/tc-14-1311-2020.   DOI