DOI QR코드

DOI QR Code

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds

지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례

  • Lee, Byung Woo (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kim, Seung-Sep (Department of Astronomy, Space Science and Geology, Chungnam National University)
  • 이병우 (충남대학교 우주.지질학과) ;
  • 김승섭 (충남대학교 우주.지질학과)
  • Received : 2021.03.05
  • Accepted : 2021.03.23
  • Published : 2021.04.28

Abstract

For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.

한반도 지진 재해 대비를 위해 지난 5년간 활성 단층 조사가 수행되어 왔다. 특히 피복 활성단층 조사는 항공 LiDAR 기반 지형 분석, 지표 지질 조사, 지구 물리 탐사 결과를 종합하여 피복된 단층면에 대한 트렌치 조사를 수반한다. 하지만 이러한 트렌치 조사에 의해 발견된 단층면은 한시적으로 연구된 후 복구되기 때문에 트렌치 단층면 현장에 대한 정보는 논문 및 보고서 등과 같은 정성 자료로 남게 된다. 이와 같은 한시적 지질 연구의 한계를 보완하기 위하여 이 연구에서는 지상 LiDAR를 활용하여 트렌치 단층면에 대한 3차원 점군 자료를 생성하고 디지털 공간상에서 트렌치 현장을 복원하였다. 지상 LiDAR 탐사는 양산 단층 지역에서 수행된 두 곳의 트렌치 조사 지점에서 수행되었으며, LiDAR 점군의 기본 속성값인 진폭과 반사도 이외에도 디지털 카메라를 활용하여 트렌치 단층면의 색상 정보도 측정하였다. 측정된 자료는 평균 0.003 m의 정합 오차를 가지는 3차원 점군 자료로 변환되어 트렌치 형상을 정교하게 복원하였다. 하지만 LiDAR 스캔 위치에 따라 점군의 진폭과 반사도 값이 변화되었으며, 햇빛 노출 정도에 따라서 트렌치 단면의 색상 정보가 다르게 형상화 되어 후처리 과정의 고도화가 필요함을 시사하였다. 이러한 점군 자료는 대용량 파일로 존재하고 점군 자료 가시화 방법 또한 제한적이기 때문에 3차원 점군 자료에 대한 연구자 간 공유가 어렵다. 이에 대한 대안으로 오픈소스 플랫폼인 Potree를 활용하여 트렌치 점군 자료를 웹 상에서 가시화하는 방법을 제안하였다. 이와 같이 우리는 시간적 그리고 공간적 제약 조건이 따르는 지질 현장 조사에서 지상 LiDAR 자료가 주요 지질 대상에 대한 재현성을 높일 수 있는 동시에 연구자 및 미래 후속 세대에 의해 손쉽게 활용될 수 있음을 보여주고자 한다.

Keywords

References

  1. Abellan, A., Oppikofer, T., Jaboyedoff, M., Rosser, N.J., Lim, M. and Lato, M.J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, v.39, p.80-97. doi: 10.1002/esp.3493
  2. Balduzzi, M.A.F., Van der Zande, D., Stuckens, J., Verstraeten, W.W. and Coppin, P. (2011). The Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis). Sensors, v.11, p.1657-1681. doi:10.3390/s110201657
  3. Bistacchi, A., Griffith, W.A., Smith, S.A.F., Di Toro, G., Jones, R. and Nielsen, S. (2011). Fault Roughness at Seismogenic Depths from LIDAR and Photogrammetric Analysis. Pure and Applied Geophysics, v.168, p.2345-2363. doi: 10.1007/s00024-011-0301-7
  4. Choi, J.-H., Kim, Y.-S. and Klinger, Y. (2017). Recent progress in studies on the characteristics of surface rupture associated with large earthquakes. Journal of the Geological Society of Korea, v.53, p.129-157. doi: 10.14770/jgsk.2017.53.1.129
  5. Cortes, L., Hernandez, J., Valencia, D. and Corvalan, P. (2014). Estimation of above-ground forest biomass using Landsat ETM+, Aster GDEM and Lidar. Forest Res, v.3, p.2. doi: 10.4172/2168-9776.1000117
  6. Duraisamy, P., Yousef, A.H., Iftekharuddin, K. and Jackson, S. (2014). Shoreline Extraction from 2-D and 3-D LiDAR Images. Paper presented at the Imaging and Applied Optics 2014, Seattle, Washington.Geosciences Journal, v.20, p.747-752. doi: 10.1364/ISA.2014.JTu2C.6
  7. Goncalves, G., Santos, S., Duarte, D. and Gomes, J. (2019). Monitoring Local Shoreline Changes by Integrating UASs, Airborne LiDAR, Historical Images and Orthophotos. In Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2019), v.1, p.126-134. doi: 10.5220/0007744101260134
  8. Guarnieri, A., Pirotti, F. and Vettore, A. (2012). Comparison of Discrete Return and Waveform Terrestrial Laser Scanning for Dense Vegetation Filtering. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v.XXXIX-B7, p.511-516. doi: 10.5194/isprsarchives-XXXIX-B7-511-2012
  9. Jones, R.R., Kokkalas, S. and McCaffrey, K.J.W. (2009). Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)--The Arkitsa fault, central Greece, as a case study. Geosphere, v.5, p.465-482. doi: 10.1130/GES00216.1
  10. Kim, K.-H., Ree, J.-H., Kim, Y., Kim, S., Kang, S.Y. and Seo, W. (2018). Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science, v.360, p.1007-1009. DOI: 10.1126/science.aat6081
  11. Kim, N., Choi, J.-H., Park, S.-I., Lee, T.-H. and Choi, Y. (2020). Cumulative offset analysis of the Central-Southern Yangsan Fault based on topography of Quaternary fluvial terrace. Journal of the Geological Society of Korea, v.56, p.135-154. doi: 10.14770/jgsk.2020.56.2.135
  12. Kim, S.S., Kim, D., Shin, D.Y. and Nho, H.J. (2020). Assessment and Analysis of Disaster Risk for Steep Slope using Drone and Terrestrial LiDAR. Journal of Korean Society for Geospatial Information Science, v.28, p.13-24. doi: 10.7319/kogsis.2020.28.4.013
  13. Kim, T., Shin, H.-C. and Kim, Y.-S. (2020). Characteristics of the topographical deformation in the central part of the Ulsan fault. Journal of the Geological Society of Korea, v.56, p.193-209. DOI : 10.14770/jgsk.2020.56.2.193
  14. Kim, Y.-S., Son, M., Choi, J.-H., Choi, J.-H., Seong, Y.B. and Lee, J. (2020). Processes and Challenges for the production of Korean active faults map. Journal of the Geological Society of Korea, v.56, p.113-134. doi: 10.14770/jgsk.2020.56.2.113
  15. Kim, Y., Rhie, J., Kang, T.-S., Kim, K.-H., Kim, M. and Lee, S.-J. (2016). The 12 September 2016 Gyeongju earthquakes: 1. Observation and remaining questions. Geosciences Journal, v.20, p.747-752. doi: 10.1007/s12303-016-0033-x
  16. Kim, Y.-S. (2020). Research trend of active fault and earthquake geology for the Korean Peninsula. Journal of the Geological Society of Korea, v.56, p.109-111. doi: 10.14770/jgsk.2020.56.2.109
  17. Kim, Y.-T., Yu, J.-H. and Hahn, H.-S. (2011). Retinex Algorithm Improvement for Color Compensation in Back-Light Image Efficently. Journal of the Korea Society of Computer and Information, v.16, p.61-69. doi: 10.9708/jksci.2011.16.1.061
  18. Lim, H. and Kim, Y. (2020). A dataset of seismic sensor responses of South Korea seismic stations. Journal of the Geological Society of Korea, v.56, p.515-524. doi: 10.14770/jgsk.2020.56.4.515
  19. Lee, H., Kim, J.C., Ko, K., Ghim, Y.S., Kim, J. and Lee, S.R. (2018). Characteristics of sand volcanoes caused by 2017 Pohang Earthquake-induced liquefaction and their paleoseismological approach. Journal of the Geological Society of Korea, v.54, p.221-235. doi: 10.14770/jgsk.2018.54.3.221
  20. Lee, Y.J. and Lee, I.K. (1972). Explanatory text of the geological map of Eonyang sheet(1: 50,000). Geological survey of Korea, 22p.
  21. Manighetti, I., Perrin, C., Gaudemer, Y., Dominguez, S., Stewart, N., Malavieille, J. and Garambois, S. (2020). Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Scientific reports, v.10, p.1-11. doi: 10.1038/s41598-020-59229-3
  22. McManamon, P.F. (2019). Lidar technologies and Systems, SPIE, Bellingham, WA USA, 504p.
  23. Naik, S.P., Gwon, O. and Kim, Y.-S. (2020). Land Damage Mapping and detailed Liquefaction Potential Analysis for the Epicentral Region of 2017 Pohang Mw 5.4 Earthquake, South Korea: An Attempt towards Sustainable Land Use Planning. In Henriques, M.H.(Eds), Prime Archives in Sustainability. Vide Leaf, Hyderabad, p.1-35. doi: 10.37247/pas.1. 2020.13
  24. Obu, J., Lantuit, H., Grosse, G., Gunther, F., Sachs, T., Helm, V. and Fritz, M. (2017). Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data. Geomorphology, v.293, p.331-346. doi: 10.1016/j.geomorph.2016.02.014
  25. Ryoo, C.-R., Kang, J.-H. and Kang, H.-C. (2018). On the Latest Tectonic Environment Around Northern Part of the Yangsan Fault, Korea. The Journal of the Petrological Society of Korea, v.27, p.173-184. doi: 10.7854/JPSK.2018.27.3.173
  26. Ryoo, C.-R. and Cheon, Y. (2019). Characteristics of the Main Fault Zone Developed Along Yangsan Fault: On the Outcrop of Cheonjeon-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea. The Journal of the Petrological Society of Korea, v.28, p.347-357. doi: 10.7854/JPSK.2019.28.4.347
  27. Scheiblauer, C. and Wimmer, M. (2011). Out-of-core selection and editing of huge point clouds. Computers & Graphics, v.35, p.342-351. doi: 10.1016/j.cag.2011.01.004
  28. Schutz, M. (2016). Potree: Rendering large point clouds in web browsers. Technische Universitat Wien, Wieden, Austria, 84p.
  29. Sim, H., Song, Y., Son, M., Park, C., Choi, W. and Khulganakhuu, C. (2017). Reactivated timings of Yangsan fault in the Northern Pohang area, Korea. Economic and Environmental Geology, v.50, p.97-104. doi: 10.9719/EEG.2017.50.2.97
  30. Song, Y., Ha, S., Lee, S., Kang, H.-C., Choi, J.-H. and Son, M. (2020). Quaternary structural characteristics and paleoseismic interpretation of the Yangsan Fault at Dangu-ri, Gyeongju-si, SE Korea, through trench survey. J. Geol. Soc. Korea, v.56, p.155-173. doi: 10.14770/jgsk.2020.56.2.155
  31. Song, Y., Park, C., Sim, H., Choi, W., Son, M. and Khulganakhuu, C. (2016). Reactivated Timings of Yangsan fault in the Sangcheon-ri area, Korea. Economic and Environmental Geology, v.49, p.97-104. doi: 10.9719/EEG.2016.49.2.97
  32. Sun, S. and Guo, X. (2016). Image enhancement using bright channel prior. Paper presented at the 2016 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration(ICIICII). p.83-86. doi: 10.1109/ICIICII.2016.0031
  33. Tak, W.J., Jun, K.W., Kim, S.D. and Lee, H.J. (2020). Using Drone and LiDAR to Assess Coastal Erosion and Shoreline Change due to the Construction of Coastal Structures. Journal of Coastal Research, v.95, p.674-678. doi: 10.2112/SI95-131.1
  34. Tye, A. and Stahl, T. (2018). Field estimate of paleoseismic slip on a normal fault using the Schmidt hammer and terrestrial LiDAR: Methods and application to the Hebgen fault (Montana, USA). Earth Surface Processes and Landforms, v.43, p.2397-2408. doi: 10.1002/esp.4403
  35. Um, S.H., Lee, D.W. and Bak, B.S. (1964). Explanatory text of the geological map of Pohang sheet(1: 50,000). Geological Survey of Korea, 17p.
  36. Xiong, L., Wang, G., Bao, Y., Zhou, X., Wang, K., Liu, H., Sun, X. and Zhao, R. (2019). A Rapid Terrestrial Laser Scanning Method for Coastal Erosion Studies: A Case Study at Freeport, Texas, USA. Sensors, v.19, p.3252. doi: 10.3390/s19153252
  37. Yoon, S.-O., Jeon, C.-K. and Hwang, S. (2013). Analysis on the Sand Beach Change at Jinbok-ri, Uljin Province of East Coast in Korea based on the High Resolution DEM by Terrestrial LiDAR. Journal of the Korean Geographical Society, v.48, p.321-335.
  38. Zilberman, A., Golbraikh, E., Kopeika, N.S., Virtser, A., Kupershmidt, I. and Shtemler, Y. (2008). Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence. Atmospheric Research, v.88, p.66-77. doi: 10.1016/j.atmosres.2007.10.003