• 제목/요약/키워드: substrate thickness

검색결과 1,915건 처리시간 0.025초

Electrical Properties of CuPc FET with Different Substrate Temperature

  • Lee, Ho-Shik;Park, Yong-Pil;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권4호
    • /
    • pp.170-173
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated the organic field-effect transistor based a copper phthalocyanine (CuPc) as an active layer on the silicon substrate. The CuPc FET device was made a topcontact type and the substrate temperature was room temperature and $150^{\circ}C$. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in CuPc FET and we calculated the effective mobility with each device. Also, we observed the AFM images with different substrate temperature.

Polyimide 기판과 ZnO 박막의 접합강도에 미치는 증착조건에 관한 연구 (A Study on the Deposition Conditions on Joint Strength of Polyimide Substrate and ZnO Thin Film)

  • 허장욱
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.62-67
    • /
    • 2013
  • The influence of internal stress and joint strength(shear, tensile) according to the deposition conditions was investigated by the Polyimide substrate and ZnO thin film. Deposition thickness and temperature affect the internal stress and the internal stress was minimum at the 60nm and $200^{\circ}C$ of the deposition conditions. Tensile strength is large at the deposition condition that shear strength is large and the shear strength was about 50% of the tensile strength. The shear strength and tensile strength were large at deposition condition that internal stress was small. Crack occurred near the joint interface of Polyimide substrate and progressed along the interface until the final fracture.

Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100)

  • Chun, Mi-Sun;Moon, Myung-Jun;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2729-2734
    • /
    • 2009
  • We report here the surface behavior of zirconium oxide deposited on Si(100) substrate depending on the different substrate temperatures. The zirconium oxide thin films were successfully deposited on the Si(100) surfaces applying radio-frequency (RF) magnetron sputtering process. The obtained zirconium oxide films were characterized by X-ray photoelectron spectroscopy (XPS) for study about the chemical environment of the elements, X-ray diffraction (XRD) for check the crystallinity of the films, spectroscopic ellipsometry (SE) technique for measuring the thickness of the films, and the morphology of the films were investigated by atomic force microscope (AFM). We found that the oxidation states of zirconium were changed from zirconium suboxides ($ZrO_{x,y}$, x,y < 2) (x; higher and y; lower oxidation state of zirconium) to zirconia ($ZrO_2$), and the surface was smoothed as the substrate temperature increased.

사각 기판의 길이진동을 이용하는 초소형 공진자에 있어서 사각 기판의 세변의 길이비가 공진특성에 미치는 영향 (Effects of Three Side Ratios of the Rectangular Substrate on the Resonant Characteristics of the Ultra-small Size Resonator Using Its Length Extensional Vibration)

  • 이개명;한성훈;김병효
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.932-937
    • /
    • 2000
  • The length extensional vibration mode of a piezoelectric ceramic substrate is used in fabricating the ultra-small size resonators and filters. In general, the three side ratios of the rectangular substrate affect the resonant characteristics of the resonator using its length extensional vibration. In this paper, their relationships are studied. We know that changing the ratio of its length to its width makes possible to change the resonant frequency of the width vibration without degrading the length extensional vibration. And frequency constant for length extensional vibration becomes slightly small as the substrate thickness becomes thin, but it does not change as its length changes. Electro-mechanical coupling factor for length extensional vibration, k$\_$31/ does not change as its length changes within length/width$\geq$4, but it becomes small as its width increases.

  • PDF

Electrical Properties of a CuPc Field-Effect Transistor Using a UV/Ozone Treated and Untreated Substrate

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.40-42
    • /
    • 2011
  • An organic field-effect transistor (OFET) was fabricated using a copper phthalocyanine (CuPc) as the active layer on the silicon substrate. The CuPc FET device was configured as a top-contact type. The substrate temperature was room temperature. The CuPc thickness was 40 nm, and the channel length and channel width were 100 ${\mu}m$ 3 mm, respectively. Typical current-voltage (I-V) characteristics of the CuPc FET were observed and subsequently compared to the UV/ozone treatment on substrate surface.

Cu 박막의 특성개선을 위한 플라즈마를 이용한 $H_2$ 전처리 효과 (Effects of $H_2$ Pretreatment using plasma for improved characteristics of Cu thin films)

  • 이종현;이정환;최시영
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.249-255
    • /
    • 1999
  • Deposition characteristics of Cu thin films using Ar carrier gas and $H_2$ processing gas at various working pressures and substrate temperatures were investigated. Also, effects of $H_2$ pretreatment using plasma at $200^{\circ}C$ of substrate temperature and 0.6 Torr of chamber pressure were stdied. Cu thin films were deposited on TiN/Si substrate at working pressure of 0.5~1.5 Torr, substrate temperatures of 140~$240^{\circ}C$ with (hface)Cu(tmvs). Substrates were pretreated by $H_2$ plasma, and Cu films deposited in situ using twofold shower head. The purity, electrical resistivity, thickness, surface morphology, optical properties of the deposited Cu films were measured b the AES, four point probe, stylus profiler, SEM,. and the uv-visible spectrophotometer. This study suggests that $H_2$ plasma is an effective method for enhancing deposition rate and for producing high quality copper thin films.

  • PDF

Transient Behaviors of ZnO Thin Films on a Transparent, Flexible Polyethylene Terephthalate Substrate

  • Kim, Yongjun;Lee, Hoseok;Yi, Junsin;Noh, Jinseo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2015
  • Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates were investigated in the very thin thickness range of 20 to 120 nm. A very unusual transition phenomenon, in which electrical resistance increases with an increase in film thickness, was observed. From structural and compositional analyses, this transition behavior was explained to arise from metallic Zn agglomerates dispersed in non-crystalline Zn-O matrix. It was unveiled that film thickness more than 80 nm is required for the development of hexagonal crystal structure of ZnO. ZnO films on PET substrates exhibited high optical transmittance and good mechanical flexibility in the thickness range. The results of this study would provide a valuable guideline for the design of ZnO thin films on organic substrates for practical applications.

  • PDF

나노인덴테이션을 이용한 나노 임프린트된 폴리머 박막의 잔류두께 측정기법 (A measurement technique for residual thickness of nano-imprinted polymer film using nano-indentation.)

  • 이학주;고순규;김재현;허신;이응숙;정준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1921-1926
    • /
    • 2003
  • Nano-imprint technology has been vigorously studied by many researchers for it is one of the most promising technologies for manufacturing the pattern with its critical dimension below 100nm. In the nano-imprint technology, nano patterns are transferred on a polymer film and the transferred patterns are used as an etch mask to define the designed patterns on a substrate or a metal layer. To this end, it is important to keep the residual thickness of the imprinted polymer film uniform. In this study, a novel measurement technique to measure the residual thickness of films is proposed based on nanoindentation theory. This technique has advantages of saving time and measuring the residual thickness of highly-localized portions in comparison with other techniques, but has limitation of requiring calibration process.

  • PDF

Measuring the Thickness of Flakes of Hexagonal Boron Nitride Using the Change in Zero-Contrast Wavelength of Optical Contrast

  • Kim, Dong Hyun;Kim, Sung-Jo;Yu, Jeong-Seon;Kim, Jong-Hyun
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.503-507
    • /
    • 2015
  • Using the reflectivity mode of an optical microscope, we analyzed the optical contrast to identify the layer number of flakes of hexagonal boron nitride on a $SiO_2$/Si substrate. Overall optical contrast in the visible range varies with the thickness of flakes. However, the wavelength of zero contrast exhibits a linear redshift of 0.53 nm per layer, independent of the $SiO_2$ thickness, and increases proportionally with $SiO_2$thickness. Experiments show good agreement with calculations and the results of AFM measurements. These results show that this zero-contrast approach is more accurate and easier than the reflectivity-contrast approach using the overall optical contrast.

크기 조절이 가능한 은 나노입자 형성을 위한 박막의 열처리 효과 (Formation of Size-controllable Ag Nanoparticles on Si Substrate by Annealing)

  • 이상훈;이태일;문경주;명재민
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.379-384
    • /
    • 2013
  • In order to produce size-controllable Ag nanoparticles and a nanomesh-patterned Si substrate, we introduce a rapid thermal annealing(RTA) method and a metal assisted chemical etching(MCE) process. Ag nanoparticles were self-organized from a thin Ag film on a Si substrate through the RTA process. The mean diameter of the nanoparticles was modulated by changing the thickness of the Ag film. Furthermore, we controlled the surface energy of the Si substrate by changing the Ar or $H_2$ ambient gas during the RTA process, and the modified surface energy was evaluated through water contact angle test. A smaller mean diameter of Ag nanoparticles was obtained under $H_2$ gas at RTA, compared to that under Ar, from the same thickness of Ag thin film. This result was observed by SEM and summarized by statistical analysis. The mechanism of this result was determined by the surface energy change caused by the chemical reaction between the Si substrate and $H_2$. The change of the surface energy affected on uniformity in the MCE process using Ag nanoparticles as catalyst. The nanoparticles formed under ambient Ar, having high surface energy, randomly moved in the lateral direction on the substrate even though the etching solution consisting of 10 % HF and 0.12 % $H_2O_2$ was cooled down to $-20^{\circ}C$ to minimize thermal energy, which could act as the driving force of movement. On the other hand, the nanoparticles thermally treated under ambient $H_2$ had low surface energy as the surface of the Si substrate reacted with $H_2$. That's why the Ag nanoparticles could keep their pattern and vertically etch the Si substrate during MCE.