• Title/Summary/Keyword: substrate interaction

Search Result 366, Processing Time 0.025 seconds

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells (고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향)

  • HyeonGyeong, Lee;Gabin, Lee;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.442-455
    • /
    • 2022
  • High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.

Effect of Rosmarinic Acid on the Focal Adhesions of MC3T3-E1 Preosteoblasts on Titanium Surface

  • Moon-Jin Jeong;Myoung-Hwa Lee;Do-Seon Lim;Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.3
    • /
    • pp.181-189
    • /
    • 2024
  • Background: Focal adhesions (FAs) is the most important process in the first step of osseointegration between preosteoblasts and titanium (Ti). FAs improvement and pre-osteoblasts cell proliferation leads to successful Ti-based dental implants. This study aimed to confirm the applicability of rosmarinic acid (RA) as a functional substance for improving FAs and cell proliferation of MC3T3-E1 preosteoblasts on Ti surfaces during the first stage of osseointegration for successful Ti-based dental implants. Methods: We used MC3T3-E1 preosteoblasts on Ti discs incubated in a medium supplemented with or without 14 ㎍/ml to decipher the effects of RA on FAs and cell proliferation. FAs and proliferation of MC3T3-E1 cells on Ti discs were assessed via MTT assay. Actin-labeled cells and paxillin contacts were observed and imaged by fluorescent microscopy, and the associated signaling pathways were revealed through western blot analysis. Results: In RA-treated MC3T3-E1 cells on Ti discs, FAs between MC3T3-E1 preosteoblasts and Ti surfaces and the expression of focal adhesion kinase (FAK), phosphorylated FAK and paxillin proteins and filamentous-actin formation increased. RA increased the proliferation of MC3T3-E1 preosteoblasts on the Ti surface as well as the expression of Grab2, Ras, pERK1/2, and ERK1/2. In addition, the expression of secretory leukocyte protease inhibitor and thymosin b4, known as nanomolecules that enhance the interaction between implanted Ti materials and preosteoblasts in the RA-treated MC3T3-E1 preosteoblasts, increased. RA not only increased the FAs of MC3T3-E1 preosteoblasts on the Ti surface through the FAK/Paxillin signaling pathway, but also increased cell proliferation and mitosis through the FAK/Grab2/Ras/ERK1/2 signaling pathway. Conclusion: RA can be applied as an effective functional substrate to improve the FAs and proliferation of MC3T3-E1 preosteoblats on Ti surfaces, which are essential in the first step of osseointegration between implanted Ti and bone tissue for the clinical success of Ti based dental implants.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Effect of sputtering conditions on the exchange bias and giant magnetoresistance in Si/Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta spin valves (스파터링 조건이 FeMn계 top 스핀 밸브의 exchange bias 및 자기적 특성에 미치는 영향)

  • Kim, K.Y.;Shin, K.S.;Han, S.H.;Lim, S.H.;Kim, H.J.;Jang, S.H.;Kang, T.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-73
    • /
    • 2000
  • Top spin valve samples with a structure Ta/NiFe/CoFe/Cu/CoFe/FeMn/Ta were deposited on a Si(100) substrate by changing d.c. magnetron sputtering conditions and the exchange-bias and magnetic properties of samples were investigated. The Exchange field, H$\_$ex/ increased with increase of sputtering power of FeMn from 30 to 150 W and CoFe from 30 to 100 W deposited on the Cu, the increase of H$\_$ex/ was found due to the improvement of preferred orientation of (111) FeMn phase from XRD results. In the case of Cu, H$\_$ex/ decreased with the increase of sputtering pressure ranging from 1 to 5 mTorr. The relationship between exchange field and resistance was investigated, spin valve samples with a large exchange field showed the lower resistance, which was strongly dependent on the good crystallinity and grain size increase as well as lower scattering effects. The Cu thickness was changed from 22 to 38 $\AA$ for Si/Ta/NiFe/CoFe/Cu(t), 30 W/CoFe, 100 W/FeMn, 100 W/Ta spin valve structures, MR ratio of 6.5 % and exchange field of about 190 Oe were obtained for the sample with Cu of 22 $\AA$ thickness. The increase of exchange field with decrease of Cu thickness was explained by FM/AFM spin-spin interaction.

  • PDF

A Gelatinase A Isoform, GA110, of Human Follicular Fluid Is Degraded by the Bovine Oviductal Fluid Component (소의 수란관액에 의한 사람 난포액의 Gelatinase A 동위효소인 GA110의 분해)

  • Kim, Min-Jung;Kim, Ji-Young;Leec, Seung-Jae;Yoon, Yong-Dal;Cho, Dong-Jae;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • When mammalian oocytes ovulate into the oviduct, associating follicular fluid components are exposed to the oviductal environment, possibly resulting in the mutual interaction between fillicu1ar and oviductal fluids. In the Present study, we have demonstrated for the first time that components of fallicular fluid could be modified by the oviductal fluid. Gelatin zymographic analyses of human follicular fluid (hFF) obtained from IVF patients showed consistently the presence of 110 kDa gelatinase (GA110) in addition to many bands among which 62 kDa gelatinase was predominant. Addition of EDTA or phenanfhroline to the gelatinase substrate buffer during gel incubation abolished GA110 band whereas phenylmethylsulffnyl fluoride (PMSF) did not. In contrast, bovine oviductal fluid(bOF) exhibited only 62 kDa gelatinase. Surprisingly, when bOF was added to hFF in 1:1 ratio and then the mixture was incubated for 3 h at 37$^{\circ}$C, GA110 of hFF disappeared. Disappearance of GA110 by bOF was observed even within 30 min after mixing with hFF. Addition of aminophenylmercuric acetate (APMA) to hFF also abolished enzymatic activity of GA110 but increased the activityof 62 kDa gelatinase. However, APMA abolished many other gelatinases as well unlike bOF. Interestingly, treatment of hFF with EDTA for 3 h remarkably increased the enzymatic activity of GA110 but not that of other gelatinases. Addition of phenanthroline, PMSF or soybean trypsin inhibitor (SBTI) did not affect overall gelatinase activities. Again, addition of bOF to the hFF pretreated with any of the above proteinase inhibitors abolished the appearance of GA110. Human serum also showed GAI 10 of which activity was greatlyenhanced by EDTA treatment. Similar to hFF, serum GA110 also disappeared by the addition of bOF. Human granulosa cell homogenate did not reveal any appreciable gelatinase activity except 92 kDa gelatinase. Anti-human gelatinase A antibody reacted with 62 kDa gelatinase of hFF. Based upon these results, it is concluded that bOF could selectively degrade an isoform of gelatinase A present in hFF and human serum.

  • PDF

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.