Browse > Article
http://dx.doi.org/10.3741/JKWRA.2019.52.11.917

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability  

Ko, Jongmin (Department of Civil Engineering, Yonsei University)
Kim, Youngsun (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
Ji, Un (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
Kang, Hojeong (Department of Civil Engineering, Yonsei University)
Publication Information
Journal of Korea Water Resources Association / v.52, no.11, 2019 , pp. 917-929 More about this Journal
Abstract
Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.
Keywords
Denitrification; Stream; Geomorphology; Microtopography; Nitrous oxide; Carbon availability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bardini, L., Boano, F., Cardenas, M. B., Revelli, R., and Ridolfi, L. (2012). "Nutrient cycling in bedform induced hyporheic zones." Geochimica et Cosmochimica Acta, Vol. 84, pp. 47-61.   DOI
2 Baulch, H. M., Schiff, S. L., Maranger, R., and Dillon, P. J. (2011). "Nitrogen enrichment and the emission of nitrous oxide from streams." Global Biogeochemical Cycles, Vol. 25, No. 4.
3 Boano, F., Demaria, A., Revelli, R., and Ridolfi, L. (2010). "Biogeochemical zonation due to intrameander hyporheic flow." Water Resources Research, Vol. 46, No. 2, pp. 1-13.
4 Burgin, A. J., and Hamilton, S. K. (2007). "Have we overemphasized in aquatic removal of nitrate the role ecosystems? A review of nitrate removal pathways." Frontiers in Ecology and the Environment, Vol. 5, No. 2, pp. 89-96.   DOI
5 Cardenas, M. B., Wilson, J. L., and Zlotnik, V. A. (2004). "Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange." Water Resources Research, Vol. 40, No. 8, pp. 1-14.
6 Dahm, C. N., Grimm, N. B., Marmonier, P., Valett, H. M., and Vervier, P. (1998). "Nutrient dynamics at the interface between surface waters and groundwaters." Freshwater Biology, Vol. 40, No. 3, pp. 427-451.   DOI
7 Dong, Z., Zhu, B., Jiang, Y., Tang, J., Liu, W., and Hu, L. (2018). "Seasonal $N_2O$ emissions respond differently to environmental and microbial factors after fertilization in wheat-maize agroecosystem." Nutrient Cycling in Agroecosystems, Vol. 112, No. 2, pp. 215-229.   DOI
8 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., and Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group.
9 Gaimster, H., Alston, M., Richardson, D. J., Gates, A. J., and Rowley, G. (2018). "Transcriptional and environmental control of bacterial denitrification and $N_2O$ emissions." FEMS Microbiology Letters, Vol. 365, No. 5, pp. 1-8.
10 Garcia-Ruiz, R., Pattinson, S. N., and Whitton, B. A. (1999). "Nitrous oxide production in the river Swale-Ouse, North-East England." Water Research, Vol. 33, No. 5, pp. 1231-1237.   DOI
11 Groffman, P. M., Gold, A. J., and Addy, K. (2000). "Nitrous oxide production in riparian zones and its importance to national emission inventories." Chemosphere-Global Change Science, Vol. 2, No. 3-4, pp. 291-299.   DOI
12 Harvey, J. W., Bohlke, J. K., Voytek, M. A., Scott, D., and Tobias, C. R. (2013). "Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance." Water Resources Research, Vol. 49, No. 10, pp. 6298-6316.   DOI
13 Hasegawa, K., Hanaki, K., Matsuo, T., and Hidaka, S. (2000). "Nitrous oxide from the agricultural water system contaminated with high nitrogen." Chemosphere-Global Change Science, Vol. 2, No. 3-4, pp. 335-345.   DOI
14 Hu, M., Chen, D., and Dahlgren, R. A. (2016). "Modeling nitrous oxide emission from rivers: a global assessment." Global Change Biology, Vol. 22, No. 11, pp. 3566-3582.   DOI
15 Kemp, M. J., and Dodds, W. K. (2002). "Comparisons of nitrification and denitrification in prairie and agriculturally influenced streams." Ecological Applications, Vol. 12, No. 4, pp. 998-1009.   DOI
16 Hudson, F. (2006). RSKSOP-175: Sample preparation and calculation for dissolved gas analysis in water samples using a GC headspace equilibration technique. U.S. Environmental Protection Agency, Vol. 2, No. RSKSOP-175, p. 1 of 14.
17 Jin, Z., Zheng, Q., Zhu, C., Wang, Y., Cen, J., and Li, F. (2018). "Contribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing model." Applied Geochemistry, Vol. 93, pp. 10-19.   DOI
18 Jurado, A., Borges, A. V., and Brouyere, S. (2017). "Dynamics and emissions of N2O in groundwater: A review." Science of the Total Environment, Vol. 584-585, pp. 207-218.   DOI
19 Korner, H., and Zumft, W. G. (1989). "Expression of denitrification enzymes in response to the dissolved oxygen levels and respiratory substrate in continuous culture of Pseudomonas stutzeri." Applied and Environmental Microbiology, Vol. 55, No. 7, pp. 1670-1676.   DOI
20 Kuypers, M. M. M., Marchant, H. K., and Kartal, B. (2018). "The microbial nitrogen-cycling network." Nature Reviews Microbiology, Vol. 16, No. 5, pp. 263-276.   DOI
21 Lan, Z. M., Chen, C. R., Rashti, M. R., Yang, H., and Zhang, D. K. (2017). "Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils." Science of the Total Environment, Vol. 576, pp. 559-571.   DOI
22 Seitzinger, S. P., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R. R., Peterson, B. J., Tobias, C. R., and van Drecht, G. (2006). "Denitrification across landscapes and waterscapes: A synthesis." Ecological Applications, Vol. 16, No. 6, pp. 2064-2090.   DOI
23 Saleh-Lakha, S., Shannon, K. E., Henderson, S. L., Zebarth, B. J., Burton, D. L., Goyer, C., and Trevors, J. T. (2009). "Effect of nitrate and acetylene on nirS, cnorB, and nosZ expression and denitrification activity in Pseudomonas mandelii." Applied and Environmental Microbiology, Vol. 75, No. 15, pp. 5082-5087.   DOI
24 Sanchez, D. A., Szynkiewicz, A., and Faiia, A. M. (2017). "Determining sources of nitrate in the semi-arid Rio Grande using nitrogen and oxygen isotopes." Applied Geochemistry, Vol. 86, pp. 59-69.   DOI
25 Schreiber, F., Wunderlin, P., Udert, K. M., and Wells, G. F. (2012). "Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies." Frontiers in Microbiology, Vol. 3, pp. 1-24.   DOI
26 Shen, Q. R., Ran, W., and Cao, Z. H. (2003). "Mechanisms of nitrite accumulation occurring in soilnitrification." Chemosphere, Vol. 50, No. 6, pp. 747-753.   DOI
27 Stein, L. Y., and Klotz, M. G. (2016). "The nitrogen cycle." Current Biology, Vol. 26, No. 3, pp. R94-R98.   DOI
28 Teixeira, C., Magalhaes, C., Boaventura, R. A. R., and Bordalo, A. A. (2010). "Potential rates and environmental controls of denitrification and nitrous oxide production in a temperate urbanized estuary." Marine Environmental Research, Vol. 70, No. 5, pp. 336-342.   DOI
29 Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G. (2019). "Nitrous oxide from streams and rivers: A review of primary biogeochemical pathways and environmental variables." Earth-Science Reviews, Vol. 191, pp. 224-262.   DOI
30 Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Bahl, K. B., Cellier, P., de Vries, W., Cotrufo, F., Skiba, U., Di Marco, C., Jones, S., Laville, P., Soussana, J. F., Loubet, B., Twigg, M., Famulari, D., Whitehead, J., Gallagher, M. W., Neftel, A., Flechard, C. R., Herrmann, B., Calanca, P. L., Schjoerring, J. K., Daemmgen, U., Horvath, L., Tang, Y. S., Emmett, B. A., Tietema, A., Penuelas, J., Kesik, M., Brueggemann, N., Pilegaard, K., Vesala, T., Campbell, C. L., Olesen, J. E., Dragosits, U., Theobald, M. R., Levya, P., Mobbs, D. C., Milne, R., Viovy, N., Vuichard, N., Smith, J. U., Smith,. P., Bergamaschi, P., Fowler, D., and Reis, S. (2007). "Challenges in quantifying biosphere-atmosphere exchange of nitrogen species." Environmental Pollution, Vol. 150, No. 1, pp. 125-139.   DOI
31 Tsuneda, S., Ohno, T., Soejima, K., and Hirata, A. (2006). "Simultaneous nitrogen and phosphorus removal using denitrifying phosphateaccumulating organisms in a sequencing batch reactor." Biochemical Engineering Journal, Vol. 27, No. 3, pp. 191-196.   DOI
32 Wang, Q., Liu, Y. R., Zhang, C. J., Zhang, L. M., Han, L. L., Shen, J. P., and He, J. Z. (2017b). "Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment." Biology and Fertility of Soils, Vol. 53, No. 6, pp. 601-611.   DOI
33 Marzadri, A., Tonina, D., Bellin, A., and Tank, J. L. (2014). "A hydrologic model demonstrates nitrous oxide emissions depend on streambed morphology." Geophysical Research Letters, Vol. 41, No. 15, pp. 5484-5491.   DOI
34 Wang, Y., Cao, W., Zhang, X., and Guo, J. (2017a). "Abiotic nitrate loss and nitrogenous trace gas emission from Chinese acidic forest soils." Environmental Science and Pollution Research, Vol. 24, No. 28, pp. 22679-22687.   DOI
35 Wang, Z., Meng, Y., Fan, T., Du, Y., Tang, J., and Fan, S. (2015). "Phosphorus removal and $N_2O$ production in anaerobic/anoxic denitrifying phosphorus removal process: Long-term impact of influent phosphorus concentration." Bioresource Technology, Vol. 179, pp. 585-594.   DOI
36 Wrage, N., Velthof, G. L., Van Beusichem, M. L., and Oenema, O. (2001). "Role of nitrifier denitrification in the production of nitrous oxide." Soil Biology and Biochemistry, Vol. 33, No. 12-13, pp. 1723-1732.   DOI
37 Zhu, X., Burger, M., Doane, T. A., and Horwath, W. R. (2013). "Ammonia oxidation pathways and nitrifier denitrification are significant sources of $N_2O$ and NO under low oxygen availability." Proceedings of the National Academy of Sciences, Vol. 110, No. 16, pp. 6328-6333.   DOI
38 Zumft, W. G., and Kroneck, P. M. H. (2006). "Respiratory Transformation of Nitrous Oxide ($N_2O$) to Dinitrogen by Bacteria and Archaea." Advances in Microbial Physiology, No. 52, pp. 107-227.
39 Li, C., Li, S. L., Yue, F. J., Liu, J., Zhong, J., Yan, Z. F., Zhang, R. C., Wang, Z. J., and Xu, S. (2019). "Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model." Science of the Total Environment, Vol. 646, pp. 801-810.   DOI
40 Liu, L., and Greaver, T. L. (2009). "A review of nitrogen enrichment effects on three biogenic GHGs: The CO2sink may be largely offset by stimulated N2O and CH4emission." Ecology Letters, Vol. 12, No. 10, pp. 1103-1117.   DOI
41 Mosier, A., and Kroeze, C. (2000). "Potential impact on the global atmospheric $N_2O$ budget of the increased nitrogen input required to meet future global food demands." Chemosphere-Global Change Science, Vol. 2, No. 3-4, pp. 465-473.   DOI
42 Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E., Gregory, S. V., Grimm, N. B., Johnson, S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., Arango, C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Johnson, L. T., Niederlehner, B. R., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M. (2008). "Stream denitrification across biomes and its response to anthropogenic nitrate loading." Nature, Vol. 452, No. 7184, pp. 202-205.   DOI
43 Paul, E. A. (2007). Soil microbiology, ecology, andbiochemistry. Academic, California, p. 340.
44 Arango, C. P., Tank, J. L., Schaller, J. L., Royer, T. V., Bernot, M. J., and David, M. B. (2007). "Benthic organic carbon influences denitrification in streams with high nitrate concentration." Freshwater Biology, Vol. 52, No. 7, pp. 1210-1222.   DOI
45 Quick, A. M., Reeder, W. J., Farrell, T. B., Tonina, D., Feris, K. P., and Benner, S. G. (2016). "Controls on nitrous oxide emissions from the hyporheic zones of streams." Environmental Science and Technology, Vol. 50, No. 21, pp. 11491-11500.   DOI
46 Ahn, M., Kim, Y., Ji, U., Gu, J., Ko, J., Bae, I., and Kang, H. (2019). "Measurement and analysis of nitrous oxide emissions over time around a dune in the experimental flume." Journal of Korean Society of Environmental Engineers, KSEE, Vol. 41, No. 4, pp. 228-234.   DOI