• Title/Summary/Keyword: substrate effects

Search Result 2,024, Processing Time 0.04 seconds

An Empirical Relation between the Plating Process and Accelerator Coverage in Cu Superfilling

  • Cho, Sung-Ki;Kim, Myung-Jun;Koo, Hyo-Chol;Kim, Soo-Kil;Kim, Jae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1603-1607
    • /
    • 2012
  • The effects of plating process on the surface coverage of the accelerator were investigated in terms of Cu superfilling for device metallization. When a substrate having 500 nm-wide trench patterns on it was immersed in an electrolyte containing poly (ethylene glycol) (PEG)-chloride ion ($Cl^-$)-bis(3-sulfopropyl) disulfide (SPS) additives without applying deposition potential for such a time of about 100s, voids were generated inside of the electrodeposit. In time-evolved electrochemical analyses, it was observed that the process (immersion without applying potential) in the electrolyte led to the build-up of high initial coverage of SPS-Cl on the surface, resulting in the fast saturation of the coverage. Repeated experiments suggested that the fast saturation of SPS-Cl failed in superfilling while a gradual increase in the SPS-Cl coverage through competition with initially adsorbed PEG-Cl enabled it. Consequently, superfilling was achievable only in the case of applying the plating potential as soon as the substrate is dipped in an electrolyte to prevent rapid accumulation of SPS-Cl on the surface.

Growth Mechanism and Crystal Ordering of Spherulitic Patterns in a Belousov-Zhabotinsky Type Reaction System

  • Yadav, Narendra;Majhi, S.S.;Srivastava, P.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3397-3406
    • /
    • 2012
  • Three types of spherulitic morphologies have been investigated in dual substrate mode of Belousov-Zhabotinsky (BZ) type reaction system. Prior to growth of spherulites, three distinct patterning behaviors have been observed sequentially during the reaction process. Initial and the early-phase of reaction showed the emergence of concentric ring-like wave patterns. A colloidal-state of reaction consists of numerous fine solid particles, which forms primarily some nucleation centers of dendritic characters. The nucleation centers were found to grow in sizes and shapes with the progress of reaction. It leads to growth of dendritic-like spherulitic crystal patterns. The resultant spherulites showed transitions in their morphologies, including sea-weeds and rhythmic spherulitic crystal patterns, by the effects substituted organic substrate and in the higher concentration of bromate-initiator respectively. The branching mechanism and crystal ordering of spherulitic textures were studied with help of optical microscope (OPM) and scanning electron microscope (SEM). Characteristics of crystal phases were also evaluated using X-ray diffraction (XRD) and differential thermal analysis (DTA). Results indicated that the compositions of reactants and crystal orderings were interrelated with morphological transitions of spherulites as illustrated and described.

Electromigration and Thermomigration in Flip-Chip Joints in a High Wiring Density Semiconductor Package

  • Yamanaka, Kimihiro
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • Keys to high wiring density semiconductor packages include flip-chip bonding and build-up substrate technologies. The current issues are the establishment of a fine pitch flip-chip bonding technology and a low coefficient of thermal expansion (CTE) substrate technology. In particular, electromigration and thermomigration in fine pitch flipchip joints have been recognized as a major reliability issue. In this paper, electromigration and thermomigration in Cu/Sn-3Ag-0.5Cu (SAC305)/Cu flip-chip joints and electromigration in Cu/In/Cu flip chip joints are investigated. In the electromigration test, a large electromigration void nucleation at the cathode, large growth of intermetallic compounds (IMCs) at the anode, a unique solder bump deformation towards the cathode, and the significantly prolonged electromigration lifetime with the underfill were observed in both types of joints. In addition, the effects of crystallographic orientation of Sn on electromigration were observed in the Cu/SAC305/Cu joints. In the thermomigration test, Cu dissolution was accelerated on the hot side, and formation of IMCs was enhanced on the cold side at a thermal gradient of about $60^{\circ}C$/cm, which was lower than previously reported. The rate of Cu atom migration was found comparable to that of electromigration under current conditions.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Mechanisms involved in modification of film structure and properties in ICP assisted dc and pulsed dc sputtering

  • Kusano, Eiji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.59.2-59.2
    • /
    • 2015
  • Modification of film structure and properties in inductively-coupled plasma (ICP) assisted dc and pulsed dc sputtering has been reported by Oya and Kusano [1] and by Sakamoto, Kusano, and Matsuda [2], showing drastic changes in films structure and properties by the ICP assistance in particular to the pulsed dc discharge. Although mechanisms involved in the modification has been reported to be the increase in energy transferred to the substrate, details of effects of low-energy ion bombardment on the modification and origin of an anomalous increase in the ion quantity by the ICP assistance to the pulsed dc discharge have not been discussed. In this presentation, mechanisms involved in film structure and property modification in ICP assisted dc and pulsed dc sputtering, in which a number of low-energy ions are formed, will be discussed based on ion energy distribution as well as effectiveness of energy transfer to the substrate by low energy particles [3]. The results discussed in this presentation will emphasize the fact that the energetic particles playing an important role in the film structure modification are those to be deposited, but not those of inert gas, when their energies range in less than 100 eV in the pressure range of magnetron sputtering.

  • PDF

Surface modification for block copolymer nanolithographyon gold surface

  • Hwang, In-Chan;Bang, Seong-Hwan;Lee, Byeong-Ju;LeeHan, Bo-Ram;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Block copolymer lithography has attracted great attention for emerging nanolithography since nanoscaleperiodic patterns can be easily obtained through self-assembly process without conventional top-down patterning process. Since the morphologies of self-assembled block copolymer patterns are strongly dependent on surface energy of a substrate, suitable surface modification is required. Until now, the surface modification has been studied by using random copolymer or self-assembled mono layers (SAMs). However, the research on surface modifications has been limited within several substrates such as Si-based materials. In present study, we investigated the formation of block copolymer on Au substrate by $O_2$ plasma treatment with the SAM of 3-(p-methoxy-phenyl)propyltrichloro-silane [MPTS, $CH_3OPh(CH_2)_3SiCl_3$]. After $O_2$ plasma treatment, the chemical bonding states of the surface were analyzed by X-ray photoelectron spectroscopy (XPS). The static contact angle measurement was performed to study the effects of $O_2$ plasma treatment on the formation of MPTS monolayer. The block copolymer nanotemplates formed on Au surface were analyzed by scanning electron microscopy. The results showed that the ordering of self-assembled block copolymer pattern and the formation of cylindrical nano hole arrays were enhanced dramatically by oxygen plasma treatment. Thus, the oxidation of gold surface by $O_2$ plasma treatment enables the MPTS to form the monolayer assembly leading to surface neutralization of gold substrates.

  • PDF

PREPARATION OF DIAMOND FILM BY DC THERMAL PLASMA (직류 열 플라즈마를 이용한 다이아몬드 합성에 관한 연구)

  • Kim, Won-Kyu;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.101-105
    • /
    • 1990
  • A DC thermal plasma system has been designed and constructed to obtain diamond films from a mixture of CH4 and H2. The effects of the deposition conditions such as substrate temperature ($850^{\circ}C-1050^{\circ}C$), gas mixing ratio (0.5-1.5% CH4 in H2), chamber pressure (50 - 200 Torr), axial magnetic field (0 - 900 Gauss) on the diamond film properties such as morphology, purity of the film and deposition rate, etc. have been examined with the aids of Scanning Electron Microscopy, X-Ray Diffraction and Raman Spectroscopy. Under optimum conditions, high quality diamond films can be obtained with high deposition rate (>$1{\mu}m/min$). Both of the growth rate and' particle size increased with the substrate temperature but the morphology changed from the faceted to unshaped when the temperature deviates its proper range. Furthermore, higher growth rates of $1.5{\mu}m/min$ can be obtained by applying an axial magnetic field to plasma torch. The observed values of interplanar spacings of diamond were in a good agreement with the values reported in ASTM data and all deposits have the diamond peak of $1332.5\;cm^{-1}$ in the Raman Spectra.

  • PDF

Purification and Characterization of Protein Phosphatase 2C from Rat Liver

  • Oh, Joung-Sook;Hwang, In-Seong;Choi, Myung-Un
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1997
  • Protein phosphatase 2C (PP2C) is one of the four major serine/threonine phosphatases which is dependent on $Mg^{2+}$ for its activity. PP2C was purified from rat liver cytosol and its characteristics were investigated. The substrate employed for routine assay was $[^{32}P]casein$ phosphorylated by PKA. The purification process involved DEAE chromatography, ammonium sulfate fractionation, phenyl sepharose chromatography, sephacryl 5-200 gel filtration, and histone agarose chromatography. The SDS-PAGE of PP2C showed one major single protein band at a position corresponding to a molecular mass of 43 kd and the purification fold was 637. The enzyme showed a pH optimum of 8 and $K_M$ value was $1.9\;{\mu}M$. However, when the substrate was changed to $[^{32}P]histone$, the pH optimum was shifted to 7 and $K_M$ value was $2.3\;{\mu}M.\;Mg^{2+}$ was essential to the enzyme activity and okadaic acid did not exert any inhibitory effect on the enzyme. To examine residue in the active site of PP2C effects of some protein-modifying reagents were tested.

  • PDF

Fabrication and Characterization of Silicon Devices for Flow Measurement (II) (흐름측정용 실리콘 소자의 제작 및 특성 평가 (II))

  • Ju, B.K.;Ko, C.G.;Kim, C.J.;Tchah, K.H.;Oh, M.H.
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 1994
  • In this study, we fabricated and characterized a calorimetric-type flow sensing element using a micromachined silicon substrate. The cooling and heating effects resulted from the gas flow were measured by two temperature sensors located at both sides of the heating resistor, and the insulator diaphragm was employed as a substrate in order to improve thermal isolation. The sensor generated $0{\sim}378.4mV$ output signal under 10V bridge-applied voltage when the nitrogen gas was passed on the sensor surface having a mass flow rate of $0{\sim}0.25grs/min$, and reached to the stable operating condition within 10 seconds.

  • PDF

Effects of Several Inhibitors of Human Liver Microsomal Cytochrome P450 3A4 on Catalytic Activities of the Enzyme (인체 간 조직의 cytochrome P450 3A4의 활성에 대한 몇가지 억제제의 영향)

  • 오현숙;이갑상;김복량
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 1995
  • Microsomes from human liver sample HL 110 oxidized aflatoxin $B_1$ $(AFB_1)$ to $AFB_1$ exo-8, 9-epoxide which was detected as a glutathione (GSH) conjugate with excess GSH S-transferase and to aflatoxin $Q_1$ ($AFB_1$; 3$\alpha$-hydroxyafiatoxin $B_1$), and testosterone to 6$\beta$-hydroxytestosterone. Anti-P450 3A4 nearly completely inhibited all of the reactions. Some fiavonoids inhibited all of the reactions. While other fiayonolds stimulated 8, 9-epoxidation and inhibited 3$\alpha$-hydroxylation. Gestodene inhibited all of the reactions when gestodene was metabolized by human liver microsomal P450 3A4 prior to adding substrate. But, ges-todene was added in the enzyme mixtures in the presence of $AFB_1$, it could not inhibit 8, 9-epoxidation of $AFB_1$. Nifedipine and troleandomycin inhibited both of the reactions of $AFB_1$ but only 3$\alpha$-hydroxylation was inhibited by the oxidation product of nifedipine. Although, troleandomycin was known as a mechanism-based inhibitor, the chemical did not show any detectable inhibitory effect on 6$\beta$-hydroxylation of testosterone. The results suggest that there are several different substrate-binding sites on P450 3A4.

  • PDF