• 제목/요약/키워드: subsonic flow

검색결과 220건 처리시간 0.21초

비정렬 오일러 코드를 이용한 2자유도계 시스템의 유체유발 진동해석 (Flow-Induced Vibration Analysis of 2-DOF System Using Unstructured Euler Code)

  • 김동현;박영민;이인;권오준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.675-680
    • /
    • 2001
  • In this study, a fluid/structure coupled analysis system using computational fluid dynamics and computational structural dynamics has been developed. The unsteady flow fields are predicted using unstructured Euler code. Coupled time-integration method (CTIM) was applied to computer simulation of the flow-induced vibration phenomena. To investigate the interaction effect of shock motions, 2-DOF airfoil systems have been studied in the subsonic and transonic flow region. Also, aeroelastic analyses for the airfoil with an arbitrary object are performed to show the analysis capability and interference effects for the complex geometries. The present results show the flutter stabilities and characteristics of aeroelastic responses with moving shock effects.

  • PDF

IR 신호 분석을 위한 비행 조건에 따른 노즐 열유동장 해석 (Numerical Analysis of Nozzle Plume Flow-Fields at Various Flight Conditions for Infrared Signature Investigation)

  • 전수환;양영록;문혁;김준영;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.601-604
    • /
    • 2011
  • Plume flow-fields of aircraft nozzles are numerically investigated at various flight conditions for infrared signature analysis. A mission profile of subsonic unmanned combat aerial vehicle is considered for the requirement of each mission, associated engine and nozzles are selected through a performance analysis. Numerical results of nozzle plume flow-fields using a CFD code are analyzed in terms of thrust, maximum temperature. It is shown that maximum temperature increase for lower altitude and higher Mach number.

  • PDF

H-S 유동의 점성효과를 고려한 원심압축기 회전차내부의 준3차원 유동해석 (Quasi-3-Dimensional Analysis of Compressible Flow within a Blade Row Including Viscous Effect in H-S Flow)

  • 오종식;조강래
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3287-3296
    • /
    • 1994
  • For the numerical computation of three-dimensional compressible flow field within a blade row in a centrifugal compressor, a quasi 3-dimensional solver which combines a reversible B-B flow and an irreversible H-S flow using finite element methods was developed. In a reversible B-B flow, the governing coordinates are modified in order to be applied to any type of turbomachinery, and two kinds of stream functions are introduced in order to make the Kutta condition exactly satisfied. In an irreversible H-S flow, the changes of entropy in the irreversible governing equations are determined not by empirical source but by the theoretical treatment of dissipation forces. The dissipation forces are obtained from the distribution of shear stresses in the flow passage which are given from the wall shear stresses using the exponential functions. A more accurate quasi-3-dimensional solver is established where the effect of body forces is involved in the non-axisymmetric H-S flow. Some numerical results obtained from authors' previous studies for axial flow machines assure that the present method is able to predict well as long as the flow is subsonic and not under strong viscous effect.

축류터빈의 동익에서 끝간격 누설유동에 의한 편향각과 압력손실의 모형화 (Modeling of Deviation Angle and Pressure Loss due to Rotor Tip Leakage Flow in Axial Turbines)

  • 윤의수;오군섭;정명균
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.13-13
    • /
    • 1998
  • A simple model of the tip leakage flow models of the rotor downstream flow is developed, based on Lakshminarayana's theoretical concept on the tip clearance flow and the experimental data published in open literature. And new spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a through flow analysis. Combining these new models and previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

  • PDF

Gun식 가스버너의 연소실내 난류 선회유동장 고찰 (Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

축류터빈에서 끝간격 유동에 의한 편향각과 압력손실의 모형 (Modeling of Deviation Angle and Pressure Loss Due to Rotor Tip Leakage Flow Effects in Axial Turbines)

  • 윤의수;박부룡;정명균
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1591-1602
    • /
    • 1998
  • Simple spanwise distribution models of deviation angle and pressure loss coefficient due to the tip leakage flow are formulated for use in association with the streamline curvature method as a flow analysis. Combining these new models with the previous deviation and loss models due to secondary flow, a robust streamline curvature method is established for flow analysis of single-stage, subsonic axial turbines with wide ranges of turning angle, aspect ratio and blading type. At the exit from rotor rows, the flow variables are mixed radially according to a spanwise transport equation. The proposed streamline curvature method is tested against a forced vortex type turbine as well as a free vortex type one. The results show that the spanwise variations of flow angle, axial velocity and loss coefficients at rotor exit are predicted with good accuracy, being comparable to a steady three-dimensional Navier-Stokes analysis. This simple and fast flow analysis is found to be very useful for the turbine design at the initial design phase.

덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰 (Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct)

  • 김장권;정규조
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

Application of Characteristic Boundary Conditions

  • 홍승규;이광섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.74-84
    • /
    • 1996
  • Characteristic boundary conditions are discussed in conjunction with a flux-difference splitting formulation as modified from Roe's linearization. Details of how one can implement the characteristic boundary conditions which are compatible with the discrete formulation at interior points are given for different types of boundaries including subsonic outflow and adiabatic wall. The latter conditions are demonstrated through computation of supersonic ogive-cylinder flow at high angle of attack and the computed wall pressure distribution is compared with experiment.

  • PDF

실린더 후류를 이용한 2차원 디퓨저 성능개선 (The improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by Cylinder)

  • 김세일
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.614-618
    • /
    • 2014
  • 본 연구에서는 디퓨저의 압력회복을 높이기 위해 디퓨저 입구에 실린더를 설치하여 후류가 압력회복에 어떤 영향을 미치는지 알아보았다. 2D-Incomp-2.1-P 해석자를 이용하여 속도, 압력에 따른 유동가시화를 통해 내부유동을 분석하였고, 압력회복계수를 비교하여 디퓨저 입구에 설치된 실린더의 후류가 디퓨저 성능에 어떤 영향을 주는지 비교하였다. 그결과 실린더를 설치하였을 때 확대부에서의 박리영역이 더 작아졌고 압력회복계수가 더 높아졌다.

  • PDF

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF