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Abstract

Characteristic boundary conditions are discussed in conjunction with a
flux-difference splitting formulation as modified from Roe’s linearization.
Details of how one can implement the characteristic boundary conditions
which are compatible with the discrete formulation at interior points are
given for different types of boundaries including subsonic outflow and
adiabatic wall., The latter conditions are demonstrated through computation
of supersonic ogive—cylinder flow at high angle of attack and the computed
wall pressure distribution is compared with experiment.

1. Introduction

Pioneering works on CFD developments, especially at NASA-Ames
along the line of flux-vector splitting methods'™ elevated potential and
usefulness of CFD codes both as a design tool for future airplanes and as
detailed flow simulations for phenomenological study. The advances in CFD
can be categorically summarized in the four areas of (i) transformation of
the Navier-Stokes equations into generalized coordinate system, (ii)
linearization of the governing equations and their discretizations with
flux-splitting schemes, (iii) boundary condition applications and (iv)
multiple blngﬁd approach for application to complex geometries.
Lombard et al®® have also contributed their share in computing the
Navier-Stokes equations through elaborate approaches which enable one to
switch among the primitive, conservative and characteristic variable vectors
easily and to apply the characteristic boundary conditions naturally. Despite
noble ideas and much achievements, there are still considerable differences
in both discretization and integration methods among the leading CFD
proponents; all for the sake of fast and robust simulations of compressible
Navier-Stokes equations.

Having recognized this, an accurate and robust Navier-Stokes solver
have been under development at ADD for engineering flow analysis and
design through improvements in (i) flux-difference splitting formulations,
(ii) algorithms for inverting three-dimensional (3-D) matrix equations, and
(iii) boundary condition applications utilizing characteristics propagation.
Present paper focuses on the last element from above and tries to illuminate
the application procedure for characteristic boundary conditions.

First, a flux-difference splitting method as applied to compressible
Navier-Stokes eguations is described in Section 2, and details of how the
characterictic boundary conditions are implemented are given in Section 3.
Results of a test case are presented for a supersonic ogive-cylinder flow,
followed by concluding remarks.
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2. Flux-Difference Splitting Method

Formulation for one-dimensional gasdynamics equations will be
elaborated first to show its commutative nature among the conservative,
primitive, and characteristic variable vectors.

One-dimensional gasdynamics equation written in conservative form
reads:

19dg . oF _

or in a difference form

1

where the conservative variable vector ¢ and the flux vector F are defined,
respectively, as '

ap ou
dg = |dpw) |, F = | pi®+p 3)
de (e+)u

J is the Jacobian of coordinate transformation from x to £, e is the total

energy per unit volume, 3( ) represents differential, and 8¢ = ¢""'— g".

Since Eq. (2) is nonlinear, it is rewritten in a linear form with primitive
vector as

]
Lo8i + Asi = 0 @
where ¢ is the primitive variable vector
e
dqg = | pdu (5)
ap

and the primitive Jacobian matrix A is determined as

A= 0 T (-DZ 6)
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where U= ]_IE,u=ZZ, P= p/(y—1), with £, representing the

projection of cell volume J ' onto y-z plane for 3-D case. Overbar, ( ),
represents that the corresponding quantities are averaged over the interval,
G, j+1), and dg¢=g;: —a;.
Now, a transformation matrix #~' is defined from

dg=M"4q )
which is independent of metric coefficients of coordinate transformation.
Then, Egs. (4) and (7) are combined into a conservative form as

1
Lo usg + AMa0 = 0 @®
1
or, Looa + MAM 20 = 0. )
It is known''® that (i) the Jacobian matrix A possesses an eigenvalue matrix

determined from |A —AI| =0, and (ii) A can be diagonalized by a square

matrix T ' via T'AT= A , where 77! is also a transformation

matrix between ¢ and ¢ and is consisted of left-eigenvectors of A,
determined from®

T'A=AT" (10)
It is noted that the choice of 7' is not unique, since it satisfies the linear

system of Eq. (10) with respect to T'. The characteristic variable vector
5 is now introduced in its difference form:
4g = T Y43 = T M 4. 11

The rows of characteristic variable vector 43 represents changes in the

entropy, positive and negative running characteristic variables along the
characteristic lines for one-dimensional flow. Changes in covariant
velocities in tangential directions are added through second and third rows

of 77! for three-dimensional formulation.

Equation (9) can now be rearranged in a from

1
%aa + MTAT ‘M ' 4g = 0 (12)

1
or %aq + Adg = 0. (13)
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Equation (12) may be equivalently written as
Z 1 P >
Zr%a t Ada = 0. 14)

Thus, Eq. (14) provides the foundation of stable upwind difference method
where either backward or forward difference is utilized based on the sign of
eigenvalue components of A, When the same idea is applied to Eq. (13},
a numerically stable system can be achieved:

fl% + A'vg+ A Ae =0 (15)
where
A = A"+ Z
(16)

= MTATT'M' + MT/L- T !

Comparing Eq. (13) with Eq. (2), one cbserves that

AF = Ang a7

A is thus another way of expressing Roe’s property S () may  be

pointed out that the splitting in Eg. (16} is not unique and that other
splittings are possible which render the differenced system numerically
stable. But the above splitting is consistent with the spirit of Eq. (14) and
Is proven to yield stable results.

The one-dimensional formulation described above can be extended to
two- or three-dimensional space straightforwardly. The governing
Navier-Stokes equations employed in the generalized coordinate system,

(& 7, ¢) , are expressed for the conservative variable vector as

T BT (Pt P+ (G4 G+ BB+ B) =0 (®)

where £, G, and A are inviscid fiux vectors, and ﬁ,,, C’;\v, and ﬁ,, are
viscous flux vectors. Also, &, =& -J ' =§&./J, etc. As before, the

inviscid fluxes are linearized for upwind discretizations by

AF=Ang=( A+ A )aAg

and A = MTA* T'M, (19)
yielding

T8+ A Veg+ A Deag+ B'vya+ B 2, q
(20)
+ C'vya+ C A4 q+ (viscous terms) = 0
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Upwind flux-difference splitting for the inviscid fluxes and second-order
central differencing for the viscous fluxes are applied for discretizations.

Presently, solutions are updated from ¢" to ¢"*' via implicit approximate
factorization in (m, ¢)-plane and symmetric Gauss-Seidel relaxation for &
—-direction.

3. Characteristic Boundary Conditions

Choice of proper boundary conditions is crucial for fast convergence. In
real flow applications, often times the boundary values are not fully
available so that one may have to either extrapolate the flow variables or
introduce some hypothetical assumptions. Characteristic boundary procedure
is a way to provide the missing boundary information without having to
specify the boundary value; for example, static pressure at the subsonic
exit plane. Application of characteristic boundary procedure is based upon a
realization that there are five characteristics associated with the convective
part of the Navier-Stokes equations. The basic idea is that one retains the
characteristic equation(s) which transport(s) information from interior
domain to the boundary. The characteristic equations whose corresponding
waves travel from outside of the computational domain to the boundary are
replaced by suitable auxiliary equations which represent the physical nature
of the incoming characteristics as best as possible. As shown earlier in
Section 2, the Navier-Stokes equations, without the viscous fluxes, can be
put into a characteristic form

Lsd + n4i=0 @D
which becoms at the boundary
—A%MTT'IM”I&J + MTAT M 49 = 0 (22)

where A=/ on the left boundary and A=A" on the right.

Recall that A; = T4 = T 'M'49. Since 4q being a primitive
variable vector is already fixed by definition, it is sufficient to modify

certain rows of 7! if one wishes to change the pertinent row of

characteristic variable 3 For the interior points, the transformation matrix
7! becomes
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1 1
" 0 i
p 0 0 P
0 x, v 2, 0
Lol ow W w0
T = _ . L (23)
0 Er £y K/
P C4 P Cy pcy P
0 L & _ & 1
o Cs o Cs pcs rP

with C4; ng?'z

yielding
_do , 4P
o YP
o (% du + vodo + 7, dw)
. 0 (x/du + vy, /dv + z,dw)
dqg = (24)
( Exdu + —gydv + ?zdw)/ ¢ +

4P
rP
—( Exdu + ?ydv + ?zdw)/zg + %

representing, from the first row, the entropy change along the
characteristic line associated with A1, the tangential velocity difference in
the n- and ¢- directions at {=constant plane, and the right-running
characteristics associated with A; = u+c¢ for the fourth row of g and the
left-running characteristics whose corresponding eigenvalue A; = u—c. The

fourth and fifth characteristics are also known as P'- and P~
—compatibility equations, respectively. Application of characteristic boundary
procedure is to replace certain row of T7! such that the product of 7!

and 4q replace the original 5 by other physical property that is suitable
as boundary condition. A few examples are illustrated below.

3.1 Subsonic Outflow

At the outflow on the right boundary, the characteristics associated
with A= u—c¢ comes from outside to the right boundary; thus, we need to

replace the 5th row of 5 which is left-running characteristics. One way is
to replace the &P -equation at the boundary with &p=0, forcing the
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pressure p to converge to a certain value as the iteration increases. The
fifth characteristic equation

1

Lo6% + 27543 = 0 (25)
is displaced by
1

%ap + A A8p=— A5~ dp (26)

The change of equation from Eq.(24) to Eq.(25) is achieved simply by the
switch in the 5th row of T ! in Eq. (23) by [ 0, 0, 0, 0, —;—P‘] to replace

the 5th 0P —-equation at the right boundary. It is noted that one needs not
to specify the pressure value at the exit plane, but a stable value of p is
reached as the iteration is increased. If one were to choose other variable,
say the speed of sound c, than the pressure p, one may substitude the

1

1 -
rx 0,0, 0, p] to enforce dc=0(.

corresponding row of 77! by [ -

3.2 Adiabatic Wall Condition
At the viscous, adiabatic wall, the five constraints are: i) zero normal
temperature gradient, ii) three no-slip conditions for u, v, w and iii)

retention of P~ - or P'- characteristic equation depending on whether it is
left or right boundary. The adiabatic condition, 4(Temp)=0, is enforced

through the change of the first row of 77! by [ -%, 0, 0,0, LP]’ and

the second and third rows of 7 ! are kept but their corresponding
eigenvalues are set to zero. The fourth row of T7! is also retained if the
wall boundary is on the left, but the fifth row is replaced by [0,
-5, ?y_-. —5?, 0] to warrant é‘ﬁ = (. All together, these conditions

transpire the characteristic equations into a form which is still consistent
with the current flux-difference formulation and its block~tridiagonal matrix
equation; resulting at the wall boundary

8T‘ = FA4T ( T* Temperature)

Xr,- @ = 0

Nrg-d =0 @7)
W) = 0 |

0P = —A4P"
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with ¢ = (4,0, w).

Other boundaries such as subsonic inflow can also be treated similarly by i)
finding a suitable candidate for ¢ and ii) substituting the correspong row
of T

4. Results
An example case is run for a supersonic flow past an ogive-cylinder

at Mach 2 with @=20° * . The computational grid in Fig. 1 consists of
55x55x37 for (£, m, ¢). The pressue contours in symmetry plane are
shown in Fig. 2, exhibiting an oblige shock on the windward side. The
vortical flow pattern in the cross plane is clearly captured and shown in
Fig. 3 in terms of velocity vectors and the pressure distribution in Fig. 4 is
found to compare well with experiment. Overall no difficulties have been
encountered in the process of convergence and the flow pattern seems to
match physical nature of the flow.

Concluding Remarks

The characteristic boundary procedure is elaborated in relation to
flux—difference splitting method. The current form of characteristic
procedure may also be applied to other types of boundries including
subsonic inflow and viscous wall with fixed temperature, among others.
However, some uncertainty still remains in the choice of replacing candidate
for the Sharacteristic variable. For this one may pose a question: Is the

pressure right variabe to substitude P~ in the case, for example, of
subsonic outflow?
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Fig. 1. Computational grid in symmetry plane.

Fig. 2. Pressure contours in symmetry plane.
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Fig. 3. Velocity vectors in a cross plane at J=45.

M=1.98, a=20.
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Fig. 4. Comparison of wall pressure distribution in windward

and leeward symmetry plane.
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