• Title/Summary/Keyword: subcritical

Search Result 243, Processing Time 0.029 seconds

Derivation of Dimensionless Routing Curves for Dam Failure Flood Wave (댐 붕괴 홍수파 해석을 위한 무차원 홍수추적곡선의 유도)

  • Lee, Jong Tae;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.87-99
    • /
    • 1992
  • The types of dam-break have been classified as instantaneous and gradual failure. Equations for estimating the peak outflow have been derived respectively as a metric unit. New dimensionless routing curves have been deveoloped based on the distance parameter which has been used in SMPDBK and hydro-geometric characteristics of dams and reservoirs in Korea. These suggested curves can be used for any case of the flow of supercritical or subcritical. The computed peak flowrate shows the trend of decreasing dependence on the Froude numbers as it increases. These curves are applied to Hyogi dam. and the results have good agreements with the data observed in the peak discharges, peak elevations and flood travel time. The simplified dam-break model in this study would contribute effectively to forecast the dam-break flood in this country with minimum informations in a short time.

  • PDF

Three-dimensional Numerical Analysis of Dam-break Waves on a Fixed and Movable Bed (고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석)

  • Kim, Dae Geun;Hwang, Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.333-341
    • /
    • 2011
  • This study analyzed the propagation of dam-break waves in an area directly downstream of a dam by using 3D numerical modeling with RANS as the governing equation. In this area, the flow of the waves has three dimensional characteristics due to the instantaneous dam break. In particular, the dam-break flows are characterized by a highly unsteady and discontinuous flow, a mixture of the sharp flood waves and their reflected waves, a mixture of subcritical and supercritical flow, and propagation in a dry and movable bed. 2D numerical modeling, in which the governing equation is the shallow water equation, was regarded as restricted in terms of dealing with the sharp fluctuation of the water level at the dam-breaking point and water level vibration at the reservoir. However, in this 30 analysis of flood wave propagation due to partial dam breaking and dam-break in channels with $90^{\circ}$ bend, those phenomena were properly simulated. In addition, the flood wave and bed profiles in a movable bed with a flat/upward/downward bed step, which represents channel aggradation or degradation, was also successfully simulated.

Criticality Analysis of KSC-4 Spent Fuel Shipping Cask (KSC-4 수송용기의 핵임계도 분석)

  • Choi, B.I.;Shin, H.S.;Park, C.M.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.1
    • /
    • pp.56-65
    • /
    • 1989
  • The nuclear criticality of the KSC-4 shipping cask which can load four assemblies of PWR spent fuel was analyzed using KENO-IV computer code and 19-group nuclear cross section set generated from 218-group neutron cross section library(DLC-43/CSRL) using AMPX system. In accordance with 10CFR71, the analysis was performed for fresh fuel assemblies, instead of the spent fuels, under both norml transportation and hypothetical accident conditions. The calculated maximum multiplication factors(Keff) of the KSC-4 cask were 0.85289 and 0.94185 for the normal transportation and hypothetical accident conditions, respectively. The highest Keff of the KSC-4 cask is within the subcritical limit prescribed in l0CFR71 and accordingly the KSC-4 cask is safely designed in terms of nulear criticality.

  • PDF

Large Eddy Simulation of Flow around Twisted Offshore Structure with Drag Reduction and Vortex Suppression (와류감쇠 및 저항저감형 나선형 해양 구조물 주위 유동 LES 해석)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Choi, Chang-Young;Chun, Ho-Hwan;Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.440-446
    • /
    • 2012
  • A twisted cylinder has been newly designed by rotating the elliptic cross section along the spanwise direction in order to reduce the drag and vorticies in wake region. The flow around the twisted cylinder at a subcritical Reynolds number (Re) of 3000 is investigated to analyze the effect of twisted spiral pattern on the drag reduction and vortex suppression using large eddy simulation (LES). The instantaneous wake structures of the twisted cylinder are compared with those of a circular and a wavy cylinder at the same Re. The shear layer of the twisted cylinder covering the recirculation region is more elongated than that of the circular and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the circular and the wavy cylinder. Consequently, the mean drag coefficient and the fluctuating lift of the twisted cylinder are less than those of the circular and the wavy cylinder.

Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap

  • Arzhannikov, Andrey V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Bedenko, Sergey V.;Prikhodko, Vadim V.;Lutsik, Igor O.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2460-2470
    • /
    • 2020
  • To study the thermophysical and neutronic properties of thorium-plutonium fuel, a conceptual design of a hybrid facility consisting of a subcritical Th-Pu reactor core and a source of additional D-D neutrons that places on the axis of the core is proposed. The source of such neutrons is a column of high-temperature plasma held in a long magnetic trap for D-D fusionreactions. This article presents computer simulation results of generation of thermonuclear neutrons in the plasma, facility neutronic properties and the evolution of a fuel nuclide composition in the reactor core. Simulations were performed for an axis-symmetric radially profiled reactor core consisting of zones with various nuclear fuel composition. Such reactor core containing a continuously operating stationary D-D neutron source with a yield intensity of Y = 2 × 1016 neutrons per second can operate as a nuclear hybrid system at its effective coefficient of neutron multiplication 0.95-0.99. Options are proposed for optimizing plasma parameters to increase the neutron yield in order to compensate the effective multiplication factor decreasing and plant power in a long operating cycle (3000-day duration). The obtained simulation results demonstrate the possibility of organizing the stable operation of the proposed hybrid 'fusion-fission' facility.

Effects of High Pressure/High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates

  • Lee, Mi-Yeon;Choi, Ye-Chul;Chun, Ji-Yeon;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.474-480
    • /
    • 2013
  • This study was performed to investigate the effects of high pressure/high temperature (HPHT) treatment on the recovery efficiency and characteristics of porcine placenta hydrolysates. The placenta hydrolysates were characterized by solubility, free amino acid contents, gel electrophoresis, gel permeation chromatography (GPC) and amino acid composition. Placenta was treated at 37.5 MPa of pressure combined with various temperatures (150, 170, and $200^{\circ}C$) or various holding times (0, 30, and 60 min at $170^{\circ}C$). Insoluble raw placenta collagen was partially solubilized (> 60% solubility) by the HPHT treatment. Free amino group content of placenta collagen was increased from 0.1 mM/g collagen to > 0.3 mM/g collagen after HPHT treatment, reflecting partial hydrolysis of collagen. The molecular weight ($M_w$) distribution showed evidence of collagen hydrolysis by shifting of $M_w$ peaks toward low molecular weight when treated temperature or holding time was increased. Alanine (Ala), glycine (Gly), hydroxyproline (Hyp), and proline (Pro) contents increased after the HPHT treatments compared to a decrease in the others. In particular, the increase in Gly was obvious, followed by Hyp and Pro, reflecting that placenta hydrolysates were mainly composed of these amino acids. However, increasing temperature or holding time hardly affected the amino acid compositions. These results indicate that the HPHT treatment is advantageous to hydrolyze collagen derived from animal by-products.

Study on Mechanisms and Orographic Effect for the Springtime Downslope Windstorm over the Yeongdong Region (봄철 영동 지역 국지 하강풍 메커니즘과 지형 효과에 대한 연구)

  • Kim, Jung-Hoon;Chung, Il-Ung
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.67-83
    • /
    • 2006
  • The statistical analysis for the springtime windstorm in Korea shows that Yeongdong region has the highest occurrence frequency during recent 10 years. The objective of this study is to find possible mechanisms for the downslope windstorm formation in the Yeongdong region by using a mesoscale numerical model, WRF. Dynamical process, wave breaking (hereafter WB), is qualitatively investigated as the candidate mechanism for a windstorm event occurred in 5 April, 2005. WB is developed in upper troposphere downstream, since stable air is lifted by the Taebaek mountain. This process can cause and maintain the severe downslope windstorm by drawing the upper flow down to the surface. And the intensified downslope wind leads the hydraulic jump (hereafter HJ) in downstream region. Froude numbers at Chuncheon (upslope side), Seorak Mountain (crest), Yangyang (lee side), and the East Sea (distant downstream position) are estimated by about 0.4, 1.0, 1.6, and 0.6, respectively. This result implies that the accelerated and supercritical (Fr>1) flow adjusts to the ambient subcritical (Fr<1) conditions in the turbulent HJ. In addition, we find the formation of upstream inversion near top level of the mountain cause the intensification of HJ. Experiments to examine the orographic effect on the mechanisms suggest that the magnitudes of WB and HJ are larger in the experiment of higher topography, but there is no significant difference of windstorm magnitude among the experiments. Another important result from these sensitivity experiments is that the intensity of downslope windstorm strongly depends on the magnitude of upper (2~4 km) wind in upstream side.

Surface-Tension Effects on the Flow Caused by a Two-Dimensional Pulsating Source Moving with a Constant Speed beneath the Free Surface (전진하며 동요하는 2차원 특이점에 의하여 발생되는 자유표면파에 미치는 표면장력의 영향)

  • Hang-S.,Choi;Jae-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 1990
  • This paper deals with the flow caused by a two-dimensional pulsating source, which moves with a constant horizontal speed beneath the free surface. The analysis is based on lincar potential theory including surface tension effects. In the case of subcritical reduced frequencies $\tau<1/4(\tau=U_{\omega}/g$, U=constant speed, $\omega$=circular frequency, g=gravitational acceleration), six wave components arc found. Two of them are largely affected by surface tension, which propagate ahead of the source in the direction of and opposite to the steady translation, respectively. The rest are almost identical with those found by Haskind(1954), i.e. for which the surface tension effect is negligible. For low oscillation frequencies, the resonant frequency still exists at $\tau$ only slightly greater than 1/4. For oscillation frequencies greater than $\nu(={\omega}^2/g)>20$, the surface tension effect is so significant that it disperses generated waves and consequently the singular phenomenon is removed. However, in addition to the gravity breaking, capillary breakings occur when the translation speed coincides with the minimum capillary celerity.

  • PDF

Self-forming dynamic membrane formed on mesh filter coupled with membrane bioreactor at different sludge concentrations

  • Rezvani, Fariba;Mehrnia, Mohammad Reza
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • This study attempted to evaluate the process of self-forming dynamic membrane formation on mesh filter in membrane bioreactor with a two-stage method of batch (agitation) and continues (aeration) stage at different sludge concentrations. Four concentrations of activated sludge including $6{\pm}0.4$, $8{\pm}0.5$, $10{\pm}0.3$, $14{\pm}0.3g/L$ were used to demonstrate the optimal concentration of sludge for treating municipal wastewater and reducing fouling in dynamic membrane bioreactor. The formation time and effluent turbidity were decreased in the batch stage when increasing the activated sludge concentration. The minimum values of formation time and effluent turbidity were 14 min and 43 NTU for the optimum mixed liqueur suspended solids of $8{\pm}0.5g/L$, respectively. To improve operational condition and fouling reduction in the aeration stage, critical fluxes were measured for all concentrations by flux-step method. With increasing the sludge concentration, the relevant critical fluxes reduced. The optimum subcritical flux of $30L/m^2/h$ was applied as operating flux in the second stage. The maximum COD removal efficiency of 98% was achieved by the concentration of $8{\pm}0.5g/L$. Compressibility index of self-forming dynamic membrane and transmembrane pressure trend remained somewhat constant until the optimal concentration of $8{\pm}0.5g/L$ and thereafter they increased steeply.

Analysis of the criticality of the shipping cask(KSC-7) (KSC-7 사용후핵연료 수송용기 핵임계해석)

  • Yoon, Jung-Hyun;Choi, Jong-Rak;Kwak, Eun-Ho;Lee, Heung-Young;Chung, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.47-59
    • /
    • 1993
  • The criticality of the shipping cask(KSC-7) for transportion of 7PWR spent fuel assemblies has been calculated and analysised on the basis of neutron transport theory. For criticality analysis, effects of the rod pitches, the fixed neutron absorbers(borated sus+boral) were considered. The effective multiplication factor has been calculated by KENO-Va, Mote Carlo method computer code, with the HANSEN-ROACH 16 group cross section set, which was made for personal computer system. The criticality for the KSC-7 cask was calculated in terms of the fresh fuel which was conservative for the aspects of nuclear critility. From the results of criticality analysis, the calculated Keff is proved to be lower than subcritical limit during normal transportation and under hypothetical accident condition. The maximum calculated criticalities of the KSC-7 were lower the safety criticality limit 1.0 recommended by US 10CFR71 both under normal and hypothetical accident condition. Also, to verify the KSC-7 criticality calculation results by using KENO-Va, it was carried out benchmark calculation with experimental data of B & W(Bobcock and Wilcox) company. From the 3s series of calculation of the KSC-7 cask and benchmark calculation, the cask was safely designed in nuclear criticality, respectively.

  • PDF