Browse > Article
http://dx.doi.org/10.1016/j.net.2020.05.003

Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap  

Arzhannikov, Andrey V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences)
Shmakov, Vladimir M. (Federal State Unitary Enterprise (Russian Federal Nuclear Center-Zababakhin All-Russia Research Institute of Technical Physics))
Modestov, Dmitry G. (Federal State Unitary Enterprise (Russian Federal Nuclear Center-Zababakhin All-Russia Research Institute of Technical Physics))
Bedenko, Sergey V. (National Research Tomsk Polytechnic University)
Prikhodko, Vadim V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences)
Lutsik, Igor O. (National Research Tomsk Polytechnic University)
Shamanin, Igor V. (National Research Tomsk Polytechnic University)
Publication Information
Nuclear Engineering and Technology / v.52, no.11, 2020 , pp. 2460-2470 More about this Journal
Abstract
To study the thermophysical and neutronic properties of thorium-plutonium fuel, a conceptual design of a hybrid facility consisting of a subcritical Th-Pu reactor core and a source of additional D-D neutrons that places on the axis of the core is proposed. The source of such neutrons is a column of high-temperature plasma held in a long magnetic trap for D-D fusionreactions. This article presents computer simulation results of generation of thermonuclear neutrons in the plasma, facility neutronic properties and the evolution of a fuel nuclide composition in the reactor core. Simulations were performed for an axis-symmetric radially profiled reactor core consisting of zones with various nuclear fuel composition. Such reactor core containing a continuously operating stationary D-D neutron source with a yield intensity of Y = 2 × 1016 neutrons per second can operate as a nuclear hybrid system at its effective coefficient of neutron multiplication 0.95-0.99. Options are proposed for optimizing plasma parameters to increase the neutron yield in order to compensate the effective multiplication factor decreasing and plant power in a long operating cycle (3000-day duration). The obtained simulation results demonstrate the possibility of organizing the stable operation of the proposed hybrid 'fusion-fission' facility.
Keywords
Thorium sub-critical assembly; Fusion neutron source; Hybrid fusione-fission reactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akademik lomonosov-1, 2. https://prisweb.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=895, 2019 (accessed 20 February 2020.
2 A. Beklemishev, A. Anikeev, V. Astrelin, et al., Novosibirsk project of gas-dynamic multiple-mirror trap, Fusion Sci. Technol. 63 (2013) 46-51, https://doi.org/10.13182/FST13-A16872.   DOI
3 D.V. Yurov, A.V. Anikeev, P.A. Bagryansky, et al., Parameters optimization in a hybrid system with a gas dynamic trap-based neutron source, Fusion Eng. Des. 87 (2012) 1684-1692, https://doi.org/10.1016/j.fusengdes.2012.07.005.   DOI
4 High temperature gas reactor: shidao BAY-1. https://prisweb.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=957%20, 2020 (accessed 20 February 2020).
5 Idaho National Laboratory, Carbon free power project. https://inl.gov/article/frequently-asked-questions, 2018 (accessed 20 February 2020).
6 Us Department of Energy, The project for constructing a high temperature gas reactor. http://www.world-nuclear-news.org/Articles/Triso-project-clears-first-phase-of-loan-guarantee, 2019 (accessed 20 February 2020).
7 International Atomic Energy Agency, Thorium Fuel Cycle-Potential Benefits and Challenges, IAEA-TECDOC-1450, IAEA, Vienna, 2005. https://www.iaea.org/publications/7192/thorium-fuel-cycle-potential-benefits-and-challenges (accessed 20 February 2020).
8 P.R. Kasten, Review of the radkowsky thorium reactor concept, Sci. Global Secur. 7 (1977) 237-269.   DOI
9 D.V. Yurov, V.V. Prikhodko, YuA. Tsidulko, Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma, Plasma Phys. Rep. 42 (3) (2016) 210-225, https://doi.org/10.1134/S1063780X16030090.   DOI
10 A. Arzhannikov, S. Bedenko, V. Shmakov, et al., Gas-cooled thorium reactor at various fuel loadings and its modification by a plasma source of extra neutrons, Nucl. Sci. Tech. 30 (2019) 181, https://doi.org/10.1007/s41365-019-0707-y.   DOI
11 D.D. Siemer, Why the molten salt fast reactor (MSFR) is the <> Gen IV reactor, Energy Science & Engineering 3 (2014) 83-97, https://doi.org/10.1002/ese3.59.   DOI
12 G.V. Tuyle, D.H. Anl, D. Beller, et al., A roadmap for developing ATW technology: system scenarios & integration, Prog. Nucl. Energy 38 (2001) 3-23, https://doi.org/10.1016/S0149-1970(00)00094-9.   DOI
13 W. Gudowski, V. Arzhanov, C. Broeders, et al., Review of the European project - impact of Accelerator-Based Technologies on nuclear fission safety (IABAT), Prog. Nucl. Energy 38 (2001) 135-151, https://doi.org/10.1016/S0149-1970(00)00099-8.   DOI
14 M. Kotschenreuther, P.M. Valanju, S.M. Mahajan, E.A. Schneider, Fusionefission transmutation scheme-efficient destruction of nuclear waste, Fusion Eng. Des. 84 (2009) 83-88, https://doi.org/10.1016/j.fusengdes.2008.11.019.   DOI
15 H.J. Rutten, K.A. Haas, Research on the incineration of plutonium in a modular HTR using thorium-based fuel, Nucl. Eng. Des. (2000), https://doi.org/10.1016/S0029-5493(99)00222-8.
16 A. Talamo, W. Gudowski, Adapting the deep burn in-core fuel management strategy for the gas turbine-modular helium reactor to a uranium-thorium fuel, Ann. Nucl. Energy 32 (2005) 1750-1781, https://doi.org/10.1016/j.anucene.2005.07.002.   DOI
17 H. Chang, Y. Yang, X. Jing, Y. Xu, Thorium-based fuel cycles in the modular high temperature reactor, Tsinghua Science and Technology. https://ieeexplore.ieee.org/document/6075960.
18 R. Gregory, Choppin, Jan-OlovLiljenzin and Jan Rydberg, Radiochemistry and Nuclear Chemistry, second ed., Butterworth-Heinemann Ltd, Oxford, 1995.
19 I. Shamanin, S. Bedenko, Y. Chertkov, I. Gubaydulin, Gas-cooled thorium reactor with fuel block of the unified design, Advances in Materials Science and Engineering (2015), https://doi.org/10.1155/2015/392721. ID 392721.
20 R.W. Moir, Fission-suppressed fusion, thorium-cycle breeder and nonproliferation, Fusion Sci. Technol. 61 (2012) 243-249, https://doi.org/10.13182/FST12-A13427.   DOI
21 I.V. Shamanin, V.M. Grachev, YuB. Chertkov, et al., Neutronic properties of high-temperature gas-cooled reactors with thorium fuel, Ann. Nucl. Energy 113 (2018) 286-293, https://doi.org/10.1016/j.anucene.2017.11.045.   DOI
22 S.V. Bedenko, N. Ghal-Eh, I.O. Lutsik, I.V. Shamanin, A fuel for generation IV nuclear energy system: isotopic composition and radiation characteristics, Appl. Radiat. Isot. 147 (2019) 189-196, https://doi.org/10.1016/j.apradiso.2019.03.005.   DOI
23 J. Knastera, F. Arbeiter, P. Carac, et al., IFMIF, the European-Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: current status and future options, Nucl. Materials Energ. 9 (2016) 46-54, https://doi.org/10.1016/j.nme.2016.04.012.   DOI
24 T.C. Simonen, R.W. Moir, A.W. Molvik, D.D. Ryutov, A 14MeV fusion neutron source for material and blanket development and fission fuel production, Nucl. Fusion 53 (2013), https://doi.org/10.1088/0029-5515/53/6/063002, 063002.   DOI
25 A.N. Shmelev, G.G. Kulikov, V.A. Kurnaev, et al., Hybrid fusion-fission reactor with a thorium blanket: it's potential in the fuel cycle of nuclear reactors, Phys. Atom. Nucl. 78 (2015) 1100-1111, https://doi.org/10.1134/S1063778815100117.   DOI
26 T.C. Simonen, Three game changing discoveries: a simpler fusion concept? J. Fusion Energy 35 (2016) 63-68, https://doi.org/10.1007/s10894-015-0017-2.   DOI
27 S. Bedenko, A. Karengin, N. Ghal-Eh, et al., Thermo-physical properties of dispersion nuclear fuel for a new-generation reactor: a computational approach, AIP Conference Proceedings 2101 (2019), https://doi.org/10.1063/1.5099594, 020002.
28 MCU project, Monte Carlo modelling of particle transport. https://mcuproject.ru, 2018 (accessed 13 November 2018).
29 R.W. Moir, N.N. Martovetsky, A.W. Molvik, et al., Mirror-based hybrids of recent design, AIP Conference Proceedings 1442 (2012) 1-4706853, https://doi.org/10.1063/1.4706853.
30 Y.Z. Kandiev, E.A. Kashaeva, K.E. Khatuntsev, et al., PRIZMA status, Ann. Nucl. Energy 82 (2015) 116-120, https://doi.org/10.1016/j.anucene.2014.09.006.   DOI
31 Innovative nuclear systems of the VI generation. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx, 2020 (accessed 20 February 2020).
32 M.K. Rowinski, T.J. White, J. Zhao, Small and Medium sized Reactors: a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 623-656, https://doi.org/10.1016/j.rser.2015.01.006.
33 T. Abram, S. Ion, Generation-IV nuclear power: a review of the state of the science, Energy Pol. 36 (2008) 4323-4330, https://doi.org/10.1016/j.enpol.2008.09.059.   DOI
34 N. Kodochigov, Y. Sukharev, E. Marova, et al., Neutronic features of the GT-MHR reactor, Nucl. Eng. Des. 222 (2003) 161-171, https://doi.org/10.1016/S0029-5493(03)00010-4.   DOI
35 H. Hidayatullah, S. Susyadi, M.H. Subki, Design and technology development for small modular reactors - safety expectations, prospects and impediments of their deployment, Prog. Nucl. Energy 79 (2015) 127-135, https://doi.org/10.1016/j.pnucene.2014.11.010.   DOI
36 I.V. Dulera, Dr R.K. Sinha, A. Rama Rao, R.J. Patel, High temperature reactor technology development in India, Prog. Nucl. Energy 101 (2017) 82-99, https://doi.org/10.1016/j.pnucene.2017.04.020.   DOI
37 D. Heuer, E. Merle-Lucotte, M. Allibert, et al., Towards the thorium fuel cycle with molten salt fast reactors, Ann. Nucl. Energy 64 (2014) 421-429, https://doi.org/10.1016/j.anucene.2013.08.002.   DOI
38 C. Zou, G. Zhu, C. Yu, et al., Preliminary study on TRUs utilization in a small modular Th-based molten salt reactor (smTMSR), Nucl. Eng. Des. 339 (2018) 75-82, https://doi.org/10.1016/j.nucengdes.2018.08.026.   DOI
39 D.A. Petti, R.R. Hobbins, P. Lowry, H. Gougar, Representative source terms and the influence of reactor attributes on functional containment in modular high-temperature gas-cooled reactors, Nucl. Technol. 184 (2013) 181-197, https://doi.org/10.13182/NT184-181.   DOI