DOI QR코드

DOI QR Code

Self-forming dynamic membrane formed on mesh filter coupled with membrane bioreactor at different sludge concentrations

  • Rezvani, Fariba (Department of Chemical Engineering, Biotechnology Group, College of Engineering, University of Tehran) ;
  • Mehrnia, Mohammad Reza (Department of Chemical Engineering, Biotechnology Group, College of Engineering, University of Tehran)
  • Received : 2015.12.07
  • Accepted : 2017.09.13
  • Published : 2018.07.25

Abstract

This study attempted to evaluate the process of self-forming dynamic membrane formation on mesh filter in membrane bioreactor with a two-stage method of batch (agitation) and continues (aeration) stage at different sludge concentrations. Four concentrations of activated sludge including $6{\pm}0.4$, $8{\pm}0.5$, $10{\pm}0.3$, $14{\pm}0.3g/L$ were used to demonstrate the optimal concentration of sludge for treating municipal wastewater and reducing fouling in dynamic membrane bioreactor. The formation time and effluent turbidity were decreased in the batch stage when increasing the activated sludge concentration. The minimum values of formation time and effluent turbidity were 14 min and 43 NTU for the optimum mixed liqueur suspended solids of $8{\pm}0.5g/L$, respectively. To improve operational condition and fouling reduction in the aeration stage, critical fluxes were measured for all concentrations by flux-step method. With increasing the sludge concentration, the relevant critical fluxes reduced. The optimum subcritical flux of $30L/m^2/h$ was applied as operating flux in the second stage. The maximum COD removal efficiency of 98% was achieved by the concentration of $8{\pm}0.5g/L$. Compressibility index of self-forming dynamic membrane and transmembrane pressure trend remained somewhat constant until the optimal concentration of $8{\pm}0.5g/L$ and thereafter they increased steeply.

Keywords

References

  1. APHA. (2005), Standard Methods for Examination of Water and Wastewater, 21st Edition, American Public Health Association, Washington DC, U.S.A.
  2. Chang, I.S. and Kim, S.N. (2005), "Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance", Process Biochem., 40(3-4), 1307-1314. https://doi.org/10.1016/j.procbio.2004.06.019
  3. Chu, L.B. and Li, S. (2006), "Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment", Sep. Purif. Technol., 51(2), 173-179. https://doi.org/10.1016/j.seppur.2006.01.009
  4. Durante, F., Di Bella, G., Torregrossa, M. and Viviani, G. (2006), "Particle size distribution and biomass growth in a submerged membrane bioreactor", Desalination, 199(1-3), 493-495. https://doi.org/10.1016/j.desal.2006.03.195
  5. Fan, B. and Huang, X. (2002), "Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment", Environ. Sci. Technol., 36(23), 5245-5251. https://doi.org/10.1021/es025789n
  6. Field, R. W., Wu, D., Howell, J. A., and Gupta, B. B. (1995), "Critical flux concept for micofiltration fouling", J. Membr. Sci., 100(3), 259-272. https://doi.org/10.1016/0376-7388(94)00265-Z
  7. Fuchs, W., Resch, C., Kernstock, M., Mayer, M., Schoeberl, P. and Braun, R. (2005), "Influence of operational conditions on the performance of a mesh filter activated sludge process", Water Res., 39(5), 803-810. https://doi.org/10.1016/j.watres.2004.12.001
  8. Guglielmi, G., Saroj, D.P., Chiarani, D. and Andreottola, G. (2007), "Sub-critical fouling in a membrane bioreactor for municipal wastewater treatment: Experimental investigation and mathematical modeling", Water Res., 41(17), 3903-3914. https://doi.org/10.1016/j.watres.2007.05.047
  9. Hao, L., Liss, S.N. and Liao, B.Q. (2017) "Effect of solids retention time on Membrane fouling in Membrane Bioreactors at a constant mixed liquor suspended solids concentration", Membr. Water Treat., 8(4), 337-353. https://doi.org/10.12989/mwt.2017.8.4.337
  10. Hasar, H., Kinaci, C., Unlu, A., Torul, H. and Ipek, U. (2004), "Rheological properties of activated sludge in a sMBR", Biochem. Eng. J., 20(1), 1-6. https://doi.org/10.1016/j.bej.2004.02.011
  11. Jinxue, L., Jinsong, Z., Xiaohui, T., Diane, M., Guoqiang, Z., Anthony, G.F., Staffan, K., Yehuda, C. and Scott, A.R. (2014), "The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors", Biofouling, 30(9), 1093-1110. https://doi.org/10.1080/08927014.2014.971238
  12. Judd, S. (2008), "The status of membrane bioreactor technology", Trends Biotechnol., 26(2), 109-116. https://doi.org/10.1016/j.tibtech.2007.11.005
  13. Katayon, S., Noor, M.M.M., Ahmad, J., Ghani, L.A., Nagaoka, H. and Aya, H. (2004), "Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater", Desalination, 167, 153-158. https://doi.org/10.1016/j.desal.2004.06.124
  14. Kiso, Y., Jung, Y.J., Ichinari, T., Park, M., Kitao, T., Nishimura, K. and Min, K.S. (2000), "Wastewater treatment performance of a filtration bioreactor equipped with a mesh as filter material", Water Res., 34(17), 4143-4150. https://doi.org/10.1016/S0043-1354(00)00201-3
  15. Le-Clech, P. (2010), "Membrane bioreactors and their uses in wastewater treatments", Appl. Microbiol. Biotechnol., 88(6), 1253-1260. https://doi.org/10.1007/s00253-010-2885-8
  16. Le-Clech, P., Jefferson, B., Chang, I.S. and Judd, S.J. (2003), "Critical flux determination by the flux-step method in a submerged membrane bioreactor", J. Membr. Sci., 227(1-2), 81-93. https://doi.org/10.1016/j.memsci.2003.07.021
  17. Le-Clech, P., Jefferson, B. and Judd, J.S. (2003), "Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor", J. Membr. Sci., 218(1-2), 117-129. https://doi.org/10.1016/S0376-7388(03)00164-9
  18. Liu, H.B., Yang, C.Z., Pu, W.H. and Zhang, J.D. (2009), "Formation mechanism and structure of dynamic membrane in dynamic membrane reactor", Chem. Eng. J., 148(2-3), 290-295. https://doi.org/10.1016/j.cej.2008.08.043
  19. Lukas, D., Marcel, G., Marketa, D., Iveta, R. and Jiri, W. (2011), "The impact of different operating conditions on membrane fouling and EPS production", Bioresource Technol., 102(13), 6870-6875. https://doi.org/10.1016/j.biortech.2011.04.061
  20. Meng, F., Shi, B., Yang, F. and Zhang, H. (2007), "New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts", J. Membr. Sci, 302(1-2), 87-94. https://doi.org/10.1016/j.memsci.2007.06.030
  21. Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J. and Zhang, X. (2006), "Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor", J. Membr. Sci., 272(1-2), 161-168. https://doi.org/10.1016/j.memsci.2005.07.041
  22. Meng, F.G., Chae, S.R, Drews, A., Kraume, M., Shin, H.S. and Yang, F.L. (2009), "Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material", Water Res., 43(6), 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044
  23. Mori, M., Seyssiecq, I. and Roche, N. (2006), "Rheological measurements of sewage sludge for various solids concentrations and geometry", Process Biochem., 41(7), 1656-1662. https://doi.org/10.1016/j.procbio.2006.03.021
  24. Poostchi, A.A., Mehrnia, M.M., Rezvani, F. and Sarrafzadeh, M.H. (2012), "Low-cost monofilament mesh filter used in membrane bioreactor process: Filtration characteristics and resistance analysis", Desalination, 285, 429-435.
  25. Poostchi, A.A., Mehrnia, M.M. and Rezvani, F. (2015), "Dynamic membrane behaviors during constant flux filtration in membrane bioreactor coupled with mesh filter", Environ. Technol., 36, 1751-1758. https://doi.org/10.1080/09593330.2015.1009496
  26. Ren, X., Shon, H.K., Jang, N., Lee, Y.G., Bae, M., Lee, J., Cho, K. and Kim, I.S. (2010), "Novel membrane bioreactor (MBR) coupled with a nonwoven fabric filter for household wastewater treatment", Water Res., 44(3), 751-760. https://doi.org/10.1016/j.watres.2009.10.013
  27. Rezvani, F., Mehrnia, M.R. and Poostchi. A.A. (2014), "Optimal operating strategies of SFDM formation for MBR application", Sep. Purif. Technol., 124, 124-133. https://doi.org/10.1016/j.seppur.2014.01.028
  28. Rosenberger, S., Kubin, K. and Kraume, M. (2002), "Rheology of activated sludge in membrane bioreactors", Eng. Life. Sci., 2(9), 269-275. https://doi.org/10.1002/1618-2863(20020910)2:9<269::AID-ELSC269>3.0.CO;2-V
  29. Wang, Y.K., Sheng, G.P., Li, W.W. and Yu, H.Q. (2012), "A pilot investigation into membrane bioreactor using mesh filter for treating low-strength municipal wastewater", Bioresource Technol., 122, 17-21. https://doi.org/10.1016/j.biortech.2012.04.020
  30. Ye, M., Han-min, Z. and Feng-lin, Y. (2008), "Experimental study on application of the boundary layer theory for estimating steady aeration intensity of precoated dynamic membrane bioreactors", Desalination, 230(1-3), 100-112. https://doi.org/10.1016/j.desal.2007.11.019
  31. Zhou, X.H., Shi, H.C., Cai, Q., He, M. and Wu, Y.X. (2008), "Function of self-forming dynamic membrane and biokinetic parameters' determination by microelectrode", Water Res., 42(10-11), 2369-2376. https://doi.org/10.1016/j.watres.2008.01.004

Cited by

  1. Carbon dioxide and methane emission of denitrification bioreactor filling waste sawdust and industrial sludge for treatment of simulated agricultural surface runoff vol.289, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.112503