• Title/Summary/Keyword: subcooling

Search Result 220, Processing Time 0.024 seconds

A Study of Reflood Heat Transfer in Electrically-Heated Fuel Rod Bundle (電氣加熱式 模擬燃料棒 다발에서의 再冠水 熱傳達 硏究)

  • 정문기;박종석;이영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 1986
  • To predict the fuel clad temperature during the reflooding phase of a LOCA, one may need a knowledge of reflood heat tranfer mechanism in a rod bundle. For this purpose reflooding experiments have been carried out with an electrically heated 3*3 rod bundle. Using the method for the determination of local heat transfer coefficient from the measured wall temperature the parametric effects of coolant flow rate, initial wall temperature, coolant subcooling and heat generation rate on the propagation of rewetting front were investigated. Prediction of the wall temperature histories for these experiments was discussed using REFLUX code with modification of the rewetting temperature correlation. Through this modification, better agreement between experiment and prediction was obtained.

External Condensation Heat Transfer Coefficients of Refrigerant Mixtures on a Smooth Tube

  • An, Kwang-Yong;Cho, Young-Mok;Seo, Kang-Tae;Jung, Dong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • In this study, condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC 134a and HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lowed than the ideal values calculated by the mass fraction weighting of the HTCs of the pure components. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against thc predicted ones by Colburn and Drew's film model and a good agreement was observed within a deviation of 15%.

  • PDF

A Study on Heat Transfer Phenomena during Solidification in a Circular Tube Containing Phase Change Material (Effect of Inclination) (원통형 용기내의 상변화물질에서의 응고 열전달에 관한 연구 (경사각 변화의 영향))

  • Song, H.J.;Kim, Y.J.;Ohu, S.C.;Yim, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.182-192
    • /
    • 1994
  • This paper focuses on the investigation of the heat transfer phenomena that occur inside the cylindrical tube. The inclination of the tube is adopted as a principal parameter varying from vertical to horizontal. The phase change material employed in this experiment is 99 percent pure n-docosane paraffin($C_{22}$ $H_{46}$). It is found that the amount of solidified mass during a prescribed solidifying period is not sensitive to the inclination of the tube but to the local layer thickness. It is studied that the latent energy is the largest contributor to the total extracted energy. The sensible energy($E_{s1}$, $E_{s2}$, $E_{s3}$) may not be negligible at the large wall-subcooling and initial-liquid-superheating, also at the first step of solidifying.

  • PDF

Derivation of Mechanistic Critical Heat Flux Model and Correlation for Water Based on Flow Excursion

  • Chang, Soon-Heung;Kim, Yun-Il;Baek, Won-Pil
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.349-355
    • /
    • 1996
  • In this study, the mechanistic critical heat flux (CHF) model and correlation for water are derived based on flow excursion (or Ledinegg instability) criterion and the simplified two-phase homogeneous model. The relationship between CHF for the water and the principal parameters such as mass flux heat of vaporization, heated length-to-diameter ratio, vapor-liquid density ratio and inlet subcooling is derived on the developed correlation. The developed CHF correlation predicts very well at the applicable ranges, 1 < P < 40 bar, 1, 300 < G 27, 00 kg/$m^2$s and inlet quality is less than -0.1. The overall mean ratio of predicted to experimental CHF value is 0.988 with standard deviation of 0.046.

  • PDF

Pressure Effects o]n Critical Heat Flux under Low Pressure and Low Flow Conditions

  • Kim, Hong-Chae;Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.82-87
    • /
    • 1996
  • To find the effects of pressure on critical heat flux (CHF) for the conditions of low pressures (especially up to 10 bar) and low mass flux (~300 kg/$m^2$s), a series of experiments have been accomplished by using uniformly heated Inconel-625 tube. The experimental ranges are as follows: pressure (from 1.2 to 8 bar). mass velocities (from 100 to 250 kg/$m^2$s) and the inlet subcooling ($\Delta$h$_{i}$ = 350 kJ/kg). According to the experimental data, it is found that the CHF is nearly independent of the pressure and increases with mass flux. From the results of the CHF correlation assessment for this experimental data, we could find somewhat different tendency of CHF behavior from every other CHF prediction correlation and table.ation and table.

  • PDF

Study on Correlation of Droplet Flow Rate and Film Boiling Heat Transfer in Spray Cooling (액적 유량과 분무냉각 막비등 열전달의 상관관계에 관한 연구)

  • Yun, Seung-Min;Kim, Yeung-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.335-340
    • /
    • 2007
  • A new correlation between the Nusselt number based on modified heat transfer coefficient and Reynold number based on droplet-flow-rate was developed for the experimental data. The modified heat transfer coefficient was defined as ratio of wall heat flux to droplet subcooling. In the previous reports, the local heat flux of spray cooling in the film boiling region was experimentally investigated for the water spray region of $D_{max} = 0.0007{\sim}0.03m^3/(m^2s)$ . In the region near the stagnation point of spray flow, a new heat transfer correlation is recommended which shows good predictions for the water spray region of $D_x{\le}0.01m^3/(m^2s)$.

A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow (과냉 비등류의 실제건도와 보이드율에 관한 연구)

  • Kim, J.H.;Kim, C.S.;Kim, K.K.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

A Study of Rewetting Temperature in Cooling of Hot Surfaces (高溫表面의 冷却時 再水着 溫度 에 관한 硏究)

  • 정문기;이영환;박종석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.463-470
    • /
    • 1985
  • In this study a parametric analysis for the rewetting temperature was made with 572 data obtained from the single tube experiment. The rewetting temperature was also evaluated by measuring the vaporization time of a liquid drop on a hot surface at the elevated pressures. The results showed that the rewetting temperature increased with flooding rate, inlet subcooling pressure and initial wall temperature, and decreased with increasing axial elevation. Based on the results obtained, the rewetting temperature correlation was suggested. From the comparison of correlated rewetting temperatures with measured values, it showed that the correlated values fell within .+-.5% error from the measured values.

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE CANADIAN DEUTERIUM URANIUM MODERATOR TESTS AT THE STERN LABORATORIES INC.

  • KIM, HYOUNG TAE;CHANG, SE-MYONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.284-292
    • /
    • 2015
  • A numerical calculation with the commercial computational fluid dynamics code CFX-14.0 was conducted for a test facility simulating the Canadian deuterium uranium moderator thermal-hydraulic. Two kinds of moderator thermal-hydraulic tests at Stern Laboratories Inc. were performed in the full geometric configuration of the Canadian deuterium uranium moderator circulating vessel, which is called a calandria tank, housing a matrix of horizontal rod bundles simulating calandria tubes. The first of these tests is the pressure drop measurement of a cross flow in the horizontal rod bundles. The other is the local temperature measurement on the cross section of the horizontal cylinder vessel simulating the calandria system. In the present study, the full geometric details of the calandria tank are incorporated in the grid generation of the computational domain to which the boundary conditions for each experiment are applied. The numerical solutions are reviewed and compared with the available test data.

Performance of Alternative Refrigerants in Low Temperature Chillers

  • Jung, Dong-Soo;Kim, Chong-Bo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.67-79
    • /
    • 1998
  • This paper is about the performance of alternative refrigerants for low temperature and transport refrigeration chillers. A breadboard refrigeration chiller was constructed with counterflow heat exchangers. R502, its transitional alternatives of R402A and R402B, and long-term alternatives of R404A and R507 were tested in an attempt to compare the performance of each refrigerant against R502. Measurements were conducted at two condensing temperatures of 43.3$^{\circ}C$ and 52.$0^{\circ}C$ and the evaporating temperature was varied over a range from -$25^{\circ}C$ to -5$^{\circ}C$. The evaporator superheat and condenser subcooling were maintained constant at about 5$^{\circ}C$ for all tests. Test results showed that all alternative fluids tested in this work can be used as 'drop-in fluids' to replace R502 without any major problem. It is also found that in the long run HFC alternatives are to be used due to their favorable environmental characteristics and better performance.

  • PDF