• Title/Summary/Keyword: subband

Search Result 434, Processing Time 0.02 seconds

Hardware Architecture of High Performance Cipher for Security of Digital Hologram (디지털 홀로그램의 보안을 위한 고성능 암호화기의 하드웨어 구조)

  • Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.374-387
    • /
    • 2012
  • In this paper, we implement a new hardware for finding the significant coefficients of a digital hologram and ciphering them using discrete wavelet packet transform (DWPT). Discrete wavelet transform (DWT) and packetization of subbands is used, and the adopted ciphering technique can encrypt the subbands with various robustness based on the level of the wavelet transform and the threshold of subband energy. The hologram encryption consists of two parts; the first is to process DWPT, and the second is to encrypt the coefficients. We propose a lifting based hardware architecture for fast DWPT and block ciphering system with multi-mode for the various types of encryption. The unit cell which calculates the repeated arithmetic with the same structure is proposed and then it is expanded to the lifting kernel hardware. The block ciphering system is configured with three block cipher, AES, SEED and 3DES and encrypt and decrypt data with minimal latency time(minimum 128 clocks, maximum 256 clock) in real time. The information of a digital hologram can be hided by encrypting 0.032% data of all. The implemented hardware used about 200K gates in $0.25{\mu}m$ CMOS library and was stably operated with 165MHz clock frequency in timing simulation.

Digital Video Watermarking Based on SPIHT Coding Using Motion Vector Analysis (움직임 벡터 정보를 이용한 SPIHT 부호화 기반의 디지털 비디오 워터마킹)

  • Kwon, Seong-Geun;Hwang, Eui-Chang;Lee, Mi-Hee;Jeong, Tai-Il;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1427-1438
    • /
    • 2007
  • Video watermarking technologies are classified into types of four kinds. The first type is to embed the watermark into a raw video signal and to code the watermarked video signal. Most of video watermarking technologies fall into the category of this type. The second type is to apply watermarking to the coding process, such as block DCT and quantization. The third is to directly embed the watermark into the compressed bitstream itself. Generally, it is referred as labelling rather than watermarking. Finally, the fourth is to embed the water mark into MPEG motion vector. This type has the difficulty in real-time process because of the high complexity and has the blocking effects because of DCT-based on coder. In this paper, we proposed the digital video watermarking that embed the watermark in SPIHT video code for I-frame using motion vector analysis. This method can remove the blocking effect occurred at the DCT-based on coder and obtain video data that has progressive transmission property. The proposed method is to select the region for the watermark embedding in I frame using motion vector estimated from the previous P or B frame. And then, it is to perform DWT and embed the watermark based on HVS into the wavelet coefficients in the same subband of DWT as the motion vector direction. Finally, the watermarked video bitstream is obtained by the SPIHT coder. The experimental results verified that the proposed method has the invisibility from the objective and subjective image quality and the robustness against the various SPIHT compression and MPEG re-code.

  • PDF

An Adaptive Information Hiding Technique of JPEG2000-based Image using Chaotic System (카오스 시스템을 이용한 JPEG2000-기반 영상의 적응적 정보 은닉 기술)

  • 김수민;서영호;김동욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.9-21
    • /
    • 2004
  • In this paper, we proposed the image hiding method which decreases calculation amount by encrypt partial data using discrete wavelet transform and linear scale quantization which were adopted as the main technique for frequency transform in JPEG2000 standard. Also we used the chaotic system which has smaller calculation amount than other encryption algorithms and then dramatically decreased calculation amount. This method operates encryption process between quantization and entropy coding for preserving compression ratio of images and uses the subband selection method and the random changing method using the chaotic system. For ciphering the quantization index we use a novel image encryption algerian of cyclically shifted in the right or left direction and encrypts two quantization assignment method (Top-down/Reflection code), made change of data less. Also, suggested encryption method to JPEG2000 progressive transmission. The experiments have been performed with the proposed methods implemented in software for about 500 images. consequently, we are sure that the proposed are efficient image encryption methods to acquire the high encryption effect with small amount of encryption. It has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas. Also, because the proposed methods are performed in the application layer, they are expected to be a good solution for the end-to-end security problem, which is appearing as one of the important problems in the networks with both wired and wireless sections.

Moving Image Compression with Splitting Sub-blocks for Frame Difference Based on 3D-DCT (3D-DCT 기반 프레임 차분의 부블록 분할 동영상 압축)

  • Choi, Jae-Yoon;Park, Dong-Chun;Kim, Tae-Hyo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • This paper investigated the sub-region compression effect of the three dimensional DCT(3D-DCT) using the difference component(DC) of inter-frame in images. The proposed algorithm are the method that obtain compression effect to divide the information into subband after 3D-DCT, the data appear the type of cubic block(8${\times}$8${\times}$8) in eight difference components per unit. In the frequence domain that transform the eight differential component frames into eight DCT frames with components of both spatial and temporal frequencies of inter-frame, the image data are divided into frame component(8${\times}$8 block) of time-axis direction into 4${\times}$4 sub block in order to effectively obtain compression data because image components are concentrate in corner region with low-frequency of cubic block. Here, using the weight of sub block, we progressed compression ratio as consider to adaptive sub-region of low frequency part. In simulation, we estimated compression ratio, reconstructed image resolution(PSNR) with the simpler image and the complex image contained the higher frequency component. In the result, we could obtain the high compression effect of 30.36dB(average value in the complex-image) and 34.75dB(average value in the simple-image) in compression range of 0.04~0.05bpp.

  • PDF

An Optimization on the Psychoacoustic Model for MPEG-2 AAC Encoder (MPEG-2 AAC Encoder의 심리음향 모델 최적화)

  • Park, Jong-Tae;Moon, Kyu-Sung;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.2
    • /
    • pp.33-41
    • /
    • 2001
  • Currently, the compression is one of the most important technology in multimedia society. Audio files arc rapidly propagated throughout internet Among them, the most famous one is MP-3(MPEC-1 Laver3) which can obtain CD tone from 128Kbps, but tone quality is abruptly down below 64Kbps. MPEC-II AAC(Advanccd Audio Coding) is not compatible with MPEG 1, but it has high compression of 1.4 times than MP 3, has max. 7.1 and 96KHz sampling rate. In this paper, we propose an algorithm that decreased the capacity of AAC encoding computation but increased the processing speed by optimizing psychoacoustic model which has enormous amount of computation in MPEG 2 AAC encoder. The optimized psychoacoustic model algorithm was implemented by C++ language. The experiment shows that the psychoacoustic model carries out FFT(Fast Fourier Transform) computation of 3048 point with 44.1 KHz sampling rate for SMR(Signal to Masking Ratio), and each entropy value is inputted to the subband filters for the control of encoder block. The proposed psychoacoustic model is operated with high speed because of optimization of unpredictable value. Also, when we transform unpredictable value into a tonality index, the speed of operation process is increased by a tonality index optimized in high frequency range.

  • PDF

Independent Component Analysis on a Subband Domain for Robust Speech Recognition (음성의 특징 단계에 독립 요소 해석 기법의 효율적 적용을 통한 잡음 음성 인식)

  • Park, Hyeong-Min;Jeong, Ho-Yeong;Lee, Tae-Won;Lee, Su-Yeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.6
    • /
    • pp.22-31
    • /
    • 2000
  • In this paper, we propose a method for removing noise components in the feature extraction process for robust speech recognition. This method is based on blind separation using independent component analysis (ICA). Given two noisy speech recordings the algorithm linearly separates speech from the unwanted noise signal. To apply ICA as closely as possible to the feature level for recognition, a new spectral analysis is presented. It modifies the computation of band energies by previously averaging out fast Fourier transform (FFT) points in several divided ranges within one met-scaled band. The simple analysis using sample variances of band energies of speech and noise, and recognition experiments showed its noise robustness. For noisy speech signals recorded in real environments, the proposed method which applies ICA to the new spectral analysis improved the recognition performances to a considerable extent, and was particularly effective for low signal-to-noise ratios (SNRs). This method gives some insights into applying ICA to feature levels and appears useful for robust speech recognition.

  • PDF

Video Compression using Characteristics of Wavelet Coefficients (웨이브렛 계수의 특성을 이용한 비디오 영상 압축)

  • 문종현;방만원
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • This paper proposes a video compression algorithm using characteristics of wavelet coefficients. The proposed algorithm can provide lowed bit rate and faster running time while guaranteeing the reconstructed image qualify by the human virtual system. In this approach, each video sequence is decomposed into a pyramid structure of subimages with various resolution to use multiresolution capability of discrete wavelet transform. Then similarities between two neighboring frames are obtained from a low-frequency subband which Includes an important information of an image and motion informations are extracted from the similarity criteria. Four legion selection filters are designed according to the similarity criteria and compression processes are carried out by encoding the coefficients In preservation legions and replacement regions of high-frequency subbands. Region selection filters classify the high-frequency subbands Into preservation regions and replacement regions based on the similarity criteria and the coefficients In replacement regions are replaced by that of a reference frame or reduced to zero according to block-based similarities between a reference frame and successive frames. Encoding is carried out by quantizing and arithmetic encoding the wavelet coefficients in preservation regions and replacement regions separately. A reference frame is updated at the bottom point If the curve of similarity rates looks like concave pattern. Simulation results show that the proposed algorithm provides high compression ratio with proper Image quality. It also outperforms the previous Milton's algorithm in an Image quality, compression ratio and running time, leading to compression ratio less than 0.2bpp. PSNR of 32 dB and running tome of 10ms for a standard video image of size 352${\times}$240 pixels.

Adaptive Block Recovery Based on Subband Energy and DC Value in Wavelet Domain (웨이블릿 부대역의 에너지와 DC 값에 근거한 적응적 블록 복구)

  • Hyun, Seung-Hwa;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.95-102
    • /
    • 2005
  • When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. No consideration of the edge-direction, when recover the lost blocks, can cause block-blurring effects. The proposed directional recovery method in this paper is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. First, the adaptive selection of neighbor blocks is performed based on the energy of wavelet subbands (EWS) and difference of DC values (DDC). The lost blocks are recovered by the linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combined EWS and DDC for better results. The proposed methods out performed the previous methods using fixed blocks.

A Encryption Technique of JPEG2000 Image Using 3-Dimensional Chaotic Cat Map (3차원 카오스 캣맵을 이용한 JPEG2000 영상의 암호화 기술)

  • Choi, Hyun-Jun;Kim, Soo-Min;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.173-180
    • /
    • 2005
  • In this paper, we proposed the image hiding method which decreases calculation amount by encrypt partial data using discrete wavelet transform(DWT) and linear scale quantization which were adopted as the main technique for frequency transform in JPEG2000 standard. Also we used the chaotic system and cat map which has smaller calculation amount than other encryption algorithms and then dramatically decreased calculation amount. This method operates encryption process between quantization and entropy coding for preserving compression ratio of images and uses the subband selection method. Also, suggested encryption method to JPEG2000 progressive transmission. The experiments have been performed with the Proposed methods implemented in software for about 500 images. Consequently, we are sure that the proposed is efficient image encryption methods to acquire the high encryption effect with small amount of encryption. It has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas.

Copyright Protection for Fire Video Images using an Effective Watermarking Method (효과적인 워터마킹 기법을 사용한 화재 비디오 영상의 저작권 보호)

  • Nguyen, Truc;Kim, Jong-Myon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.579-588
    • /
    • 2013
  • This paper proposes an effective watermarking approach for copyright protection of fire video images. The proposed watermarking approach efficiently utilizes the inherent characteristics of fire data with respect to color and texture by using a gray level co-occurrence matrix (GLCM) and fuzzy c-means (FCM) clustering. GLCM is used to generate a texture feature dataset by computing energy and homogeneity properties for each candidate fire image block. FCM is used to segment color of the fire image and to select fire texture blocks for embedding watermarks. Each selected block is then decomposed into a one-level wavelet structure with four subbands [LL, LH, HL, HH] using a discrete wavelet transform (DWT), and LH subband coefficients with a gain factor are selected for embedding watermark, where the visibility of the image does not affect. Experimental results show that the proposed watermarking approach achieves about 48 dB of high peak-signal-to-noise ratio (PSNR) and 1.6 to 2.0 of low M-singular value decomposition (M-SVD) values. In addition, the proposed approach outperforms conventional image watermarking approach in terms of normalized correlation (NC) values against several image processing attacks including noise addition, filtering, cropping, and JPEG compression.