• Title/Summary/Keyword: sub-solution

Search Result 2,560, Processing Time 0.026 seconds

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method (균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.785-789
    • /
    • 2005
  • $TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.

Microstructural and Electrical Properties of Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) Thin Films by Chemical Solution Deposition Method (화학용액 증착법으로 제조한 Bi0.9A0.1Fe0.975V0.025O3+α(A=Nd, Tb) 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.646-650
    • /
    • 2017
  • We have evaluated the ferroelectric and electrical properties of pure $BiFeO_3$ (BFO) and $Bi_{0.9}A_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (A=Nd, Tb) thin films on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by using a chemical solution deposition method. The remnant polarization ($2P_r$) of the $Bi_{0.9}Tb_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BTFVO) thin film was approximately $65{\mu}C/cm^2$, with a maximum applied electric field of 950 kV/cm and a frequency of 10 kHz, where as that of the $Bi_{0.9}Nd_{0.1}Fe_{0.975}V_{0.025}O_{3+{\alpha}}$ (BNFVO) thin film was approximately $37{\mu}C/cm^2$ with a maximum applied electric field of 910 kV/cm. The leakage current density of the co-doped BNFVO thin film was four orders of magnitude lower than that of the pure BFO thin film, at $2.75{\times}10^{-7}A/cm^2$ with an applied electric field of 100 kV/cm. The grain size and uniformity of the co-doped BNFVO and BTFVO thin films were improved, in comparison to the pure BFO thin film, through structural modificationsdue to the co-doping with Nd and Tb.

AN ALGEBRAIC SOLUTION OF EINSTEIN'S FIELD EQUATIONS IN X4

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2015
  • The main goal in the present paper is to obtain a particular solution $g_{{\lambda}{\mu}}$, ${\Gamma}^{\nu}_{{\lambda}{\mu}}$ and an algebraic solution $\bar{g}_{{\lambda}{\mu}}$, $\bar{\Gamma}^{\nu}_{{\lambda}{\mu}}$ by means of $g_{{\lambda}{\mu}}$, ${\Gamma}^{\nu}_{{\lambda}{\mu}}$ in UFT $X_4$.

Characteristic of Photodegradation of MTBE Using TiO2/UV Process (TiO2/UV공정을 이용한 수중 MTBE의 광분해 특성)

  • Ryu, Seong Pil;Kim, Seong Su;O, Yun Geun
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • The objective of this study is to delineate removal efficiency of the MTBE in solution by $TiO_2$ photocatalytic degradation as a function of the following different experimental conditions: Initial concentration of MTBE, air flow rate in solution, $H_2O_2$ dosage and pH of the solution. Photodegradation rate was increased with decreasing initial concentration of MTBE. The removal efficiency was 82% after 180 min in the case of MTBE concentration of 100 mg/L but 100% after 180 min in the case of 20 mg/L. Removal efficiency was increased with increasing pH, $H_2O_2$ dosage and air flow rate in solution.

Photocatalysis Characteristics of Nano Cu/TiO2 Composite Powders Fabricated from Salt Solution (염용액으로부터 제조된 Cu/TiO2복합분말의 광촉매 특성)

  • 고봉석;안인섭;배승열;이상진
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.136-141
    • /
    • 2003
  • In the present study, $TiO_2$ imbedded copper matrix powders have been successfully prepared from the ($CuSO_4+TiO_2+Zn$) composite salt solution. The composite $Cu/TiO_2$ powders were formed by drying the solution at $200{\sim}~400^{\circ}C$ in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of $Cu/TiO_2$ composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite $Cu/TiO_2$ powders under the UV irradiation for 8 hours.

Characterization of Hydrazine Solution Processed Multi-layered CuInSe2 Thin Films (하이드라진 용액법으로 형성된 CuInSe2 다층 박막 분석)

  • Chung, Choong-Heui
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.169-173
    • /
    • 2015
  • $CuInSe_2$ thin films which have been widely used for thin solar cells as a light absorber were prepared by hydrazine solution processing, and their microstructural properties were investigated. Hydrazine $CuInSe_2$ precursor solutions were prepared by dissolving $Cu_2S$, S, $In_2Se_3$ and Se powder in hydrazine solvent. Multilayer $CuInSe_2$ chalcopyrite phase thin films were prepared by repeating spin-coating process using the precursor solution. Unfortunately, the presence of the interfaces between each $CuInSe_2$ layer formed by multi-layer coating impeded grain growth across the interface. Here, by doing simple interface engineering to solve the limited grain growth issue, the large grained (${\sim}1{\mu}m$) $CuInSe_2$ thin films were obtained.

Fabrication of Li2TiO3 Pebbles by Lithium Solution Penetration Method (리튬용액 침투방법에 의한 Li2TiO3 페블 제조)

  • Yu, Min-Woo;Park, Yi-Hyun;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.333-340
    • /
    • 2013
  • To fabricate spherical lithium titanate ($Li_2TiO_3$) pebbles which are used for a breeder material in fusion reactor, titanium oxide ($TiO_2$) granules were used as a starting material. The granules were pre-sintered, and then aqueous lithium nitrate solution infiltrated into the granules at vacuum condition. The granules were crystallized to $Li_2TiO_3$ after sintering under the control of process parameters. In this study, the concentration of lithium in the solution, as well as the number of penetration times and sintering temperature affected the final crystallite phase and the microstructure of the pebbles. In particular, the sphericity and size of the pebbles were effectively controlled by a technical rolling process. The useful spherical $Li_2TiO_3$ pebbles which have 10~20% porosity and 60~120 N compressive strength were obtained through the sintering at $1000{\sim}1100^{\circ}C$ in the multi-times infiltration process with 50 wt% solution. The physical properties of pebbles such as density, porosity and strength, can be controlled by a selection of $TiO_2$ powders and control of processing parameters. It can be thought that the lithium penetration method is a useful method for the fabrication of mass product of spherical $Li_2TiO_3$ pebbles.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

ON DELAY DIFFERENTIAL EQUATIONS WITH MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS THAN ONE

  • Risto Korhonen;Yan Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.229-246
    • /
    • 2024
  • We consider the delay differential equations $$b(z)w(z+1)+c(z)w(z-1)+a(z)\frac{w'(z)}{w^k(z)}=\frac{P(z, w(z))}{Q(z, w(z))}$$, where k ∈ {1, 2}, a(z), b(z) ≢ 0, c(z) ≢ 0 are rational functions, and P(z, w(z)) and Q(z, w(z)) are polynomials in w(z) with rational coefficients satisfying certain natural conditions regarding their roots. It is shown that if this equation has a non-rational meromorphic solution w with hyper-order ρ2(w) < 1, then either degw(P) = degw(Q) + 1 ≤ 3 or max{degw(P), degw(Q)} ≤ 1. In addition, it is shown that in the case max{degw(P), degw(Q)} = 0 the equations above can have such a solution, with an additional zero density requirement, only if the coefficients of the equation satisfy certain strict conditions.