Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.2.65

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution  

Fatoba, O.S. (Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Faculty of Engineering and the Built Environment)
Popoola, A.P.I. (Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Faculty of Engineering and the Built Environment)
Fedotova, T. (Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Faculty of Engineering and the Built Environment)
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.2, 2015 , pp. 65-74 More about this Journal
Abstract
This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.
Keywords
UNSG10150Steel; Zn-Sn coating; corrosion rate; hardness; corrosion current density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O.S.I. Fayomi, M. Abdulwahab and A.P.I. Popoola. J. Ovonic Res., 9, 5 : 123132 (2013).
2 C.A. Panakh-zade, T.B. Amirdzhanova and T. Kh. Kurbanov. ZhNKh, 30, 10, 517-524 (1985).
3 D. Hwang, J. Jin, H. Lee, H. Kim, H. Ching, D. Kim, S. Jang and D. Kim. Sci. Rep., 4, 1-7 (2014).
4 M.J. Rahman, S.R. Sen, M. Moniruzzamanand and K.M. Shorowordi. J. Mech. Eng., 40, 912 (2009).
5 A.P.I. Popoola, O.S.I. Fayomi and O.M. Popoola. Int. J. Electrochem. Sci., 7, 48984917 (2012).
6 M.M. Abou-Krisha, F.H. Assaf and S.A. El-Naby. J. Coat. Technol. Res., 6, 391399 (2009).
7 A.P.I. Popoola, S.L. Pityana and O.M. Popoola. J. S. Afri. Inst. Min. Metall., 111, 335-344 (2011).
8 G. Sun, Y. Zhang, C. Liu, K. Luo, X. Tao and P. Li. Mater. Des., 31, 2737-2744 (2010)   DOI   ScienceOn
9 M. Pushpavanaman. Bull. Electrochem., 16, 559-566 (2000).
10 E. Popesco and R. Tournier. Le zingage electrolytique pratique, Medro Edition, (1999).
11 C.T. Kwok, F.T. Cheng and H.C. Man. J. Surf. Coat. Technol., 200, 3544-3552 (2006).   DOI   ScienceOn
12 L.A. Dobrzanski, M. Piec, M. Bonek, E. Jonda and A. Klimpel. J. Achiev. Mater. Manuf. Eng., 20, 1-2, 235-238 (2007).
13 V.I. Korobov, L.V. Petrenko and V.V. Poltavelts. Universal J. Chem., 2, 5, 76-85 (2014).
14 A. Yakovlev, P. Bertrand, I. Smurov. Thin Solid Films. 453, 133-138 (2004).
15 M. Abdullah, A.S. Fouda, S.A. Shama and E.A. Afifi. Afr. J. Pure Appl. Chem., 9, 083-091 (2008).
16 S. Dubent, M. De Petris-Wery, M. Saurat and H.F. Ayedi. Mater. Chem. Phys., 104, 146-152 (2007).   DOI   ScienceOn
17 S. Fashu, J.L. Zhang, W.Q. Bai, X.L. Wang and J.P. Tu. Surf. Interface Anal., 1-10 (2014). Doi10.1002/sia.5728.   DOI   ScienceOn
18 A.P.I. Popoola, S.L. Pityana and O.M. Popoola. Int. J. Electrochem. Sci., 6, 5038-5051 (2011).
19 B.M. Praveen and T.V. Venkatesha. Appl. Surf. Sci., 254, 8, 2418-2424 (2008).   DOI   ScienceOn
20 V. Zivica. Bull. Mater. Sci., 25, 5, 371-374 (2002).   DOI
21 S. Felui, R. Barajas, J. Bastidas and M. Morcillo. J. Coat. Technol., 61, 775, 71-76 (1989).
22 O.S.I. Fayomi, V.R. Tau, A.P.I. Popoola, B.M. Durodola, O.O. Ajayi, C.A. Loto, and O.A. Inegbenebor. J. Mater. Environ. Sci., 3, 271-280 (2011).
23 O.S.I. Fayomi, and A.P.I. Popoola. Int. J. Electrochem. Sci., 7, 6555-6570 (2012).
24 P.E. Arvidsson. Powder. Metall. Int., 24, 176-179(1992).
25 E. Lugscheider, H. Eschnauer and H. Gruner. Thermal spray coatings, New Materials Processing application(ed.), Frank N Longo (USA:ASM), p.77. 1985.
26 A.K. Pattanaik, A.S. Khanna, C.S. Harandranath, K. Wissenback, and C.S. Goswani. Bull. Mater. Sci., 18, 2, 169-190 (1995).   DOI
27 J. Zhang, C. Sun, Z. Yu, J. Cheng, W. Li, and J. Duan. Int. J. Electrochem. Sci., 9, 5712-5721 (2014).
28 F. Fontenay. Galvanotechnik, 93, 2534-2541 (2002).
29 B. Bobiæ, S. Mitroviæ, M. Babiæ, and I. Bobiæ. Tribol. Ind., 32, 3-11 (2010).
30 A.P.I. Popoola, O.S.I. Fayomi and O.M. Popoola. Int. J. Electrochem. Sci., 7, 4898-4917 (2012).
31 E. Guaus and J. Torrent-Burgues. J. Electroanal. Chem., 549, 25-36 (2003).   DOI   ScienceOn
32 S.J. Blunden and A.J. Killmeyer. Adv. Mater. Processes., 140, 6 : 37-39 (1991).
33 E. Budman and M. McCoy. Met. Finish., 93, 9, 10-11(1995).   DOI
34 E. Budman and D. Stevens. Trans. Inst. Met. Finish., 76, 3, B34 (1998).
35 D.A. Schario, M.L. Klingenberg and E.W. Brooman. Abstracts of the 190th Meeting of the Electrochemical Society, 96-2(309), 1996, The Electrochemical Society, Pennington, NY.
36 F.J. Honey, E.C. Kedward, and V. Wride. J. Vac. Sci. Technol., 4, 60, 2593 (1986).   DOI
37 R.A. Grigoryan. Cand. Sci. (Chem.) Dissertation, Chernogolovka: Institute of Structural Macro-Kinetics and Materials Science RAS, (2001).
38 R.N. Japtap, P.P. Patil and S.Z. Hassan. Prog. Org.Coat., 63, 389-394 (2008).   DOI   ScienceOn